82
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Design, Materials, and Mechanobiology of Biodegradable Scaffolds for Bone Tissue Engineering

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          A review about design, manufacture, and mechanobiology of biodegradable scaffolds for bone tissue engineering is given. First, fundamental aspects about bone tissue engineering and considerations related to scaffold design are established. Second, issues related to scaffold biomaterials and manufacturing processes are discussed. Finally, mechanobiology of bone tissue and computational models developed for simulating how bone healing occurs inside a scaffold are described.

          Related collections

          Most cited references238

          • Record: found
          • Abstract: not found
          • Article: not found

          Biodegradable polymers as biomaterials

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Recent advances in bone tissue engineering scaffolds.

            Bone disorders are of significant concern due to increase in the median age of our population. Traditionally, bone grafts have been used to restore damaged bone. Synthetic biomaterials are now being used as bone graft substitutes. These biomaterials were initially selected for structural restoration based on their biomechanical properties. Later scaffolds were engineered to be bioactive or bioresorbable to enhance tissue growth. Now scaffolds are designed to induce bone formation and vascularization. These scaffolds are often porous, made of biodegradable materials that harbor different growth factors, drugs, genes, or stem cells. In this review, we highlight recent advances in bone scaffolds and discuss aspects that still need to be improved. Copyright © 2012 Elsevier Ltd. All rights reserved.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Synthetic biodegradable polymers as orthopedic devices

              Polymer scientists, working closely with those in the device and medical fields, have made tremendous advances over the past 30 years in the use of synthetic materials in the body. In this article we will focus on properties of biodegradable polymers which make them ideally suited for orthopedic applications where a permanent implant is not desired. The materials with the greatest history of use are the poly(lactides) and poly(glycolides), and these will be covered in specific detail. The chemistry of the polymers, including synthesis and degradation, the tailoring of properties by proper synthetic controls such as copolymer composition, special requirements for processing and handling, and mechanisms of biodegradation will be covered. An overview of biocompatibility and approved devices of particular interest in orthopedics are also covered.
                Bookmark

                Author and article information

                Journal
                Biomed Res Int
                Biomed Res Int
                BMRI
                BioMed Research International
                Hindawi Publishing Corporation
                2314-6133
                2314-6141
                2015
                26 March 2015
                : 2015
                : 729076
                Affiliations
                1Studies and Applications in Mechanical Engineering Research Group (GEAMEC), Universidad Santo Tomás, Bogotá, Colombia
                2Biomimetics Laboratory and Numerical Methods and Modeling Research Group (GNUM), Instituto de Biotecnología (IBUN), Universidad Nacional de Colombia, Bogotá, Colombia
                Author notes

                Academic Editor: Xuejun Wen

                Article
                10.1155/2015/729076
                4391163
                25883972
                c69c2ee5-9bdb-46a3-ad04-f7fe5d93bbf1
                Copyright © 2015 Marco A. Velasco et al.

                This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 4 November 2014
                : 27 January 2015
                Categories
                Review Article

                Comments

                Comment on this article