0
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Site-Specific Synthesis and In Situ Immobilization of Fluorescent Silver Nanoclusters on DNA Nanoscaffolds by Use of the Tollens Reaction

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references49

          • Record: found
          • Abstract: found
          • Article: not found

          DNA-templated assembly and electrode attachment of a conducting silver wire.

          Recent research in the field of nanometre-scale electronics has focused on two fundamental issues: the operating principles of small-scale devices, and schemes that lead to their realization and eventual integration into useful circuits. Experimental studies on molecular to submicrometre quantum dots and on the electrical transport in carbon nanotubes have confirmed theoretical predictions of an increasing role for charging effects as the device size diminishes. Nevertheless, the construction of nanometre-scale circuits from such devices remains problematic, largely owing to the difficulties of achieving inter-element wiring and electrical interfacing to macroscopic electrodes. The use of molecular recognition processes and the self-assembly of molecules into supramolecular structures might help overcome these difficulties. In this context, DNA has the appropriate molecular-recognition and mechanical properties, but poor electrical characteristics prevent its direct use in electrical circuits. Here we describe a two-step procedure that may allow the application of DNA to the construction of functional circuits. In our scheme, hybridization of the DNA molecule with surface-bound oligonucleotides is first used to stretch it between two gold electrodes; the DNA molecule is then used as a template for the vectorial growth of a 12 microm long, 100 nm wide conductive silver wire. The experiment confirms that the recognition capabilities of DNA can be exploited for the targeted attachment of functional wires.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            DNA-templated Ag nanocluster formation.

            The high affinity of Ag+ for DNA bases has enabled creation of short oligonucleotide-encapsulated Ag nanoclusters without formation of large nanoparticles. Time-dependent formation of cluster sizes ranging from Ag1 to Ag4/oligonucleotide were observed with strong, characteristic electronic transitions between 400 and 600 nm. The slow nanocluster formation kinetics enables observation of specific aqueous nanocluster absorptions that evolve over a period of 12 h. Induced circular dichroism bands confirm that the nanoclusters are associated with the chiral ss-DNA template. Fluorescence, absorption, mass, and NMR spectra all indicate that multiple species are present, but that their creation is both nucleotide- and time-dependent.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Single-molecule chemical reactions on DNA origami.

              DNA nanotechnology and particularly DNA origami, in which long, single-stranded DNA molecules are folded into predetermined shapes, can be used to form complex self-assembled nanostructures. Although DNA itself has limited chemical, optical or electronic functionality, DNA nanostructures can serve as templates for building materials with new functional properties. Relatively large nanocomponents such as nanoparticles and biomolecules can also be integrated into DNA nanostructures and imaged. Here, we show that chemical reactions with single molecules can be performed and imaged at a local position on a DNA origami scaffold by atomic force microscopy. The high yields and chemoselectivities of successive cleavage and bond-forming reactions observed in these experiments demonstrate the feasibility of post-assembly chemical modification of DNA nanostructures and their potential use as locally addressable solid supports.
                Bookmark

                Author and article information

                Journal
                Angewandte Chemie International Edition
                Angew. Chem. Int. Ed.
                Wiley
                14337851
                April 26 2011
                April 26 2011
                April 06 2011
                : 50
                : 18
                : 4176-4179
                Article
                10.1002/anie.201007529
                c6a082d0-cd72-4b19-9c0d-e950065f7b76
                © 2011

                http://doi.wiley.com/10.1002/tdm_license_1.1

                History

                Comments

                Comment on this article