+1 Recommend
1 collections
      • Record: found
      • Abstract: found
      • Article: found

      Pathology or Normal Variant: What Constitutes a Delay in Puberty?

      Read this article at

          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.


          Puberty is a complex maturation process that begins during fetal life and persists until the acquisition of reproduction function. The fundamental event that activates puberty occurs in the hypothalamus. A complex neuron network stimulates GnRH secretion, which stimulates pituitary gonadotropin secretion and then gonadal steroid secretion. Pubertal delay is defined as the presentation of clinical signs of puberty 2-2.5 SD later than in the normal population. Three major groups of etiopathogeneses are described: (1) hypogonadotropic hypogonadism, (2) hypergonadotropic hypogonadism, and (3) constitutional delay of puberty (CDP) - the most common cause of delayed puberty in boys. The differential diagnosis between CDP and isolated hypogonadotropic hypogonadism remains difficult. Mechanisms of pubertal timing are now better understood and genetic or epigenetic causes can explain some pubertal delays. However, there are still unexplained mechanisms. Treatment of delayed puberty is necessary to ensure full pubertal development for the adolescent and in case of hypogonadism, to restore fertility. Finally, precocious diagnosis of hypogonadism is primordial but can be difficult during childhood and in cases of partial hypogonadism. The study of genetic pubertal diseases or of different animal models could help to discover new diagnostic or therapeutic tools.

          Related collections

          Most cited references 54

          • Record: found
          • Abstract: found
          • Article: not found

          TAC3 and TACR3 mutations in familial hypogonadotropic hypogonadism reveal a key role for Neurokinin B in the central control of reproduction.

          The timely secretion of gonadal sex steroids is essential for the initiation of puberty, the postpubertal maintenance of secondary sexual characteristics and the normal perinatal development of male external genitalia. Normal gonadal steroid production requires the actions of the pituitary-derived gonadotropins, luteinizing hormone and follicle-stimulating hormone. We report four human pedigrees with severe congenital gonadotropin deficiency and pubertal failure in which all affected individuals are homozygous for loss-of-function mutations in TAC3 (encoding Neurokinin B) or its receptor TACR3 (encoding NK3R). Neurokinin B, a member of the substance P-related tachykinin family, is known to be highly expressed in hypothalamic neurons that also express kisspeptin, a recently identified regulator of gonadotropin-releasing hormone secretion. These findings implicate Neurokinin B as a critical central regulator of human gonadal function and suggest new approaches to the pharmacological control of human reproduction and sex hormone-related diseases.
            • Record: found
            • Abstract: found
            • Article: not found

            Regulation of gonadotropin-releasing hormone secretion by kisspeptin/dynorphin/neurokinin B neurons in the arcuate nucleus of the mouse.

            Kisspeptin is encoded by the Kiss1 gene, and kisspeptin signaling plays a critical role in reproduction. In rodents, kisspeptin neurons in the arcuate nucleus (Arc) provide tonic drive to gonadotropin-releasing hormone (GnRH) neurons, which in turn supports basal luteinizing hormone (LH) secretion. Our objectives were to determine whether preprodynorphin (Dyn) and neurokinin B (NKB) are coexpressed in Kiss1 neurons in the mouse and to evaluate its physiological significance. Using in situ hybridization, we found that Kiss1 neurons in the Arc of female mice not only express the Dyn and NKB genes but also the NKB receptor gene (NK3) and the Dyn receptor [the kappa opioid receptor (KOR)] gene. We also found that expression of the Dyn, NKB, KOR, and NK3 in the Arc are inhibited by estradiol, as has been established for Kiss1, and confirmed that Dyn and NKB inhibit LH secretion. Moreover, using Dyn and KOR knock-out mice, we found that long-term disruption of Dyn/KOR signaling compromises the rise of LH after ovariectomy. We propose a model whereby NKB and dynorphin act autosynaptically on kisspeptin neurons in the Arc to synchronize and shape the pulsatile secretion of kisspeptin and drive the release of GnRH from fibers in the median eminence.
              • Record: found
              • Abstract: found
              • Article: not found

              Loss-of-function mutations in FGFR1 cause autosomal dominant Kallmann syndrome.

              We took advantage of overlapping interstitial deletions at chromosome 8p11-p12 in two individuals with contiguous gene syndromes and defined an interval of roughly 540 kb associated with a dominant form of Kallmann syndrome, KAL2. We establish here that loss-of-function mutations in FGFR1 underlie KAL2 whereas a gain-of-function mutation in FGFR1 has been shown to cause a form of craniosynostosis. Moreover, we suggest that the KAL1 gene product, the extracellular matrix protein anosmin-1, is involved in FGF signaling and propose that the gender difference in anosmin-1 dosage (because KAL1 partially escapes X inactivation) explains the higher prevalence of the disease in males.

                Author and article information

                Horm Res Paediatr
                Hormone Research in Paediatrics
                S. Karger AG
                October 2014
                07 July 2014
                : 82
                : 4
                : 213-221
                aDepartment of Pediatrics and Pediatric Endocrinology, Hospital Infantil Universitario Niño Jesús, bInstituto de Investigación La Princesa, cDepartment of Pediatrics, Universidad Autónoma de Madrid, and dCIBER Fisiopatología de la obesidad y nutrición, Instituto de Salud Carlos III, Madrid, Spain
                Author notes
                *Jesús Argente, Hospital Infantil Universitario Niño Jesús, Universidad Autónoma de Madrid, Avda. Menéndez Pelayo, 65, ES-28009 Madrid (Spain), E-Mail jesus.argente@uam.es
                362600 Horm Res Paediatr 2014;82:213-221
                © 2014 S. Karger AG, Basel

                Copyright: All rights reserved. No part of this publication may be translated into other languages, reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, microcopying, or by any information storage and retrieval system, without permission in writing from the publisher. Drug Dosage: The authors and the publisher have exerted every effort to ensure that drug selection and dosage set forth in this text are in accord with current recommendations and practice at the time of publication. However, in view of ongoing research, changes in government regulations, and the constant flow of information relating to drug therapy and drug reactions, the reader is urged to check the package insert for each drug for any changes in indications and dosage and for added warnings and precautions. This is particularly important when the recommended agent is a new and/or infrequently employed drug. Disclaimer: The statements, opinions and data contained in this publication are solely those of the individual authors and contributors and not of the publishers and the editor(s). The appearance of advertisements or/and product references in the publication is not a warranty, endorsement, or approval of the products or services advertised or of their effectiveness, quality or safety. The publisher and the editor(s) disclaim responsibility for any injury to persons or property resulting from any ideas, methods, instructions or products referred to in the content or advertisements.

                Page count
                Figures: 1, Tables: 2, Pages: 9
                Mini Review


                Comment on this article