44
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Effects of cyclic stretch on the molecular regulation of myocardin in rat aortic vascular smooth muscle cells

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          The expression of myocardin, a cardiac-restricted gene, increases during environmental stress. How mechanical stretch affects the regulation of myocardin in vascular smooth muscle cells (VSMCs) is not fully understood. We identify the mechanisms and pathways through which mechanical stretch induces myocardin expression in VSMCs.

          Results

          Rat VSMCs grown on a flexible membrane base were stretched to 20% of maximum elongation, at 60 cycles per min. An in vivo model of aorta-caval shunt in adult rats was also used to investigate myocardin expression. Cyclic stretch significantly increased myocardin and angiotensin II (AngII) expression after 18 and 6 h of stretch. Addition of extracellular signal-regulated kinases (ERK) pathway inhibitor (PD98059), ERK small interfering RNA (siRNA), and AngII receptor blocker (ARB; losartan) before stretch inhibited the expression of myocardin protein. Gel shift assay showed that myocardin-DNA binding activity increased after stretch. PD98059, ERK siRNA and ARB abolished the binding activity induced by stretch. Stretch increased while myocardin-mutant plasmid, PD98059, and ARB abolished the promoter activity. Protein synthesis by measuring [ 3H]proline incorporation into the cells increased after cyclic stretch, which represented hypertrophic change of VSMCs. An in vivo model of aorta-caval shunt also demonstrated increased myocardin protein expression in the aorta. Confocal microscopy showed increased VSMC size 24 h after cyclic stretch and VSMC hypertrophy after creation of aorta-caval shunt for 3 days.

          Conclusions

          Cyclic stretch enhanced myocardin expression mediated by AngII through the ERK pathway in cultured rat VSMCs. These findings suggest that myocardin plays a role in stretch-induced VSMC hypertrophy.

          Related collections

          Most cited references32

          • Record: found
          • Abstract: found
          • Article: not found

          The role of shear stress in the pathogenesis of atherosclerosis.

          Although the pathobiology of atherosclerosis is a complex multifactorial process, blood flow-induced shear stress has emerged as an essential feature of atherogenesis. This fluid drag force acting on the vessel wall is mechanotransduced into a biochemical signal that results in changes in vascular behavior. Maintenance of a physiologic, laminar shear stress is known to be crucial for normal vascular functioning, which includes the regulation of vascular caliber as well as inhibition of proliferation, thrombosis and inflammation of the vessel wall. Thus, shear stress is atheroprotective. It is also recognized that disturbed or oscillatory flows near arterial bifurcations, branch ostia and curvatures are associated with atheroma formation. Additionally, vascular endothelium has been shown to have different behavioral responses to altered flow patterns both at the molecular and cellular levels and these reactions are proposed to promote atherosclerosis in synergy with other well-defined systemic risk factors. Nonlaminar flow promotes changes to endothelial gene expression, cytoskeletal arrangement, wound repair, leukocyte adhesion as well as to the vasoreactive, oxidative and inflammatory states of the artery wall. Disturbed shear stress also influences the site selectivity of atherosclerotic plaque formation as well as its associated vessel wall remodeling, which can affect plaque vulnerability, stent restenosis and smooth muscle cell intimal hyperplasia in venous bypass grafts. Thus, shear stress is critically important in regulating the atheroprotective, normal physiology as well as the pathobiology and dysfunction of the vessel wall through complex molecular mechanisms that promote atherogenesis.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Molecular mechanisms of the vascular responses to haemodynamic forces.

            Blood vessels are permanently subjected to mechanical forces in the form of stretch, encompassing cyclic mechanical strain due to the pulsatile nature of blood flow and shear stress. Significant variations in mechanical forces, of physiological or physiopathological nature, occur in vivo. These are accompanied by phenotypical modulation of smooth muscle cells and endothelial cells, producing structural modifications of the arterial wall. In all the cases, vascular remodelling can be allotted to a modification of the tensional strain or shear, and underlie a trend to reestablish baseline mechanical conditions. Vascular cells are equipped with numerous receptors that allow them to detect and respond to the mechanical forces generated by pressure and shear stress. The cytoskeleton and other structural components have an established role in mechanotransduction, being able to transmit and modulate tension within the cell via focal adhesion sites, integrins, cellular junctions and the extracellular matrix. Mechanical forces also initiate complex signal transduction cascades, including nuclear factor-kappaB and mitogen-activated protein kinase pathways, leading to functional changes within the cell.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Molecular basis of the effects of mechanical stretch on vascular smooth muscle cells.

              The pulsatile nature of blood pressure and flow creates hemodynamic stimuli in the forms of cyclic stretch and shear stress, which exert continuous influences on the constituents of the blood vessel wall. Vascular smooth muscle cells (VSMCs) use multiple sensing mechanisms to detect the mechanical stimulus resulting from pulsatile stretch and transduce it into intracellular signals that lead to modulations of gene expression and cellular functions, e.g., proliferation, apoptosis, migration, and remodeling. The cytoskeleton provides a structural framework for the VSMC to transmit mechanical forces between its luminal, abluminal, and junctional surfaces, as well as its interior, including the focal adhesion sites, the cytoplasm, and the nucleus. VSMCs also respond differently to the surrounding structural environment, e.g., two-dimensional versus three-dimensional matrix. In vitro studies have been conducted on cultured VSMCs on deformable substrates to elucidate the molecular mechanisms by which the cells convert mechanical inputs into biochemical events, eventually leading to functional responses. The knowledge gained from research on mechanotransduction in vitro, in conjunction with verifications under in vivo conditions, will advance our understanding of the physiological and pathological processes involved in vascular remodeling and adaptation in health and disease.
                Bookmark

                Author and article information

                Contributors
                Journal
                J Biomed Sci
                J. Biomed. Sci
                Journal of Biomedical Science
                BioMed Central
                1021-7770
                1423-0127
                2013
                15 July 2013
                : 20
                : 1
                : 50
                Affiliations
                [1 ]School of Medicine, Fu-Jen Catholic University, New Taipei, Taiwan
                [2 ]Division of Cardiology, Shin Kong Wu Ho-Su Memorial Hospital, 95 Wen-Chang Rd, Taipei, Taiwan
                [3 ]Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
                Article
                1423-0127-20-50
                10.1186/1423-0127-20-50
                3734126
                23855625
                c6a6a1a7-941b-4ba2-be0c-00ae345a10b0
                Copyright © 2013 Chiu et al.; licensee BioMed Central Ltd.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 9 April 2013
                : 10 July 2013
                Categories
                Research

                Molecular medicine
                myocardin,stretch,vascular smooth muscle cells,erk pathway
                Molecular medicine
                myocardin, stretch, vascular smooth muscle cells, erk pathway

                Comments

                Comment on this article