8
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Processing Factors Affecting the Phytochemical and Nutritional Properties of Pomegranate ( Punica granatum L.) Peel Waste: A Review

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Pomegranate peel has substantial amounts of phenolic compounds, such as hydrolysable tannins (punicalin, punicalagin, ellagic acid, and gallic acid), flavonoids (anthocyanins and catechins), and nutrients, which are responsible for its biological activity. However, during processing, the level of peel compounds can be significantly altered depending on the peel processing technique used, for example, ranging from 38.6 to 50.3 mg/g for punicalagins. This review focuses on the influence of postharvest processing factors on the pharmacological, phytochemical, and nutritional properties of pomegranate ( Punica granatum L.) peel. Various peel drying strategies (sun drying, microwave drying, vacuum drying, and oven drying) and different extraction protocols (solvent, super-critical fluid, ultrasound-assisted, microwave-assisted, and pressurized liquid extractions) that are used to recover phytochemical compounds of the pomegranate peel are described. A total phenolic content of 40.8 mg gallic acid equivalent (GAE)/g DM was recorded when sun drying was used, but the recovery of the total phenolic content was higher at 264.3 mg TAE/g when pressurised liquid extraction was performed. However, pressurised liquid extraction is costly due to the high initial investment costs and the limited possibility of carrying out selective extractions of organic compounds from complex peel samples. The effects of these methods on the phytochemical profiles of pomegranate peel extracts are also influenced by the cultivar and conditions used, making it difficult to determine best practice. For example, oven drying at 60 °C resulted in higher levels of punicalin of 888.04 mg CE/kg DM compared to those obtained 40 °C of 768.11 mg CE/kg DM for the Wonderful cultivar. Processes that are easy to set up, cost-effective, and do not compromise the quality and safety aspects of the peel are, thus, more desirable. From the literature survey, we identified a lack of studies testing pretreatment protocols that may result in a lower loss of the valuable biological compounds of pomegranate peels to allow for full exploitation of their health-promoting properties in potentially new value-added products.

          Related collections

          Most cited references152

          • Record: found
          • Abstract: found
          • Article: not found

          Antioxidant activity of pomegranate juice and its relationship with phenolic composition and processing.

          The antioxidant activity of pomegranate juices was evaluated by four different methods (ABTS, DPPH, DMPD, and FRAP) and compared to those of red wine and a green tea infusion. Commercial pomegranate juices showed an antioxidant activity (18-20 TEAC) three times higher than those of red wine and green tea (6-8 TEAC). The activity was higher in commercial juices extracted from whole pomegranates than in experimental juices obtained from the arils only (12-14 TEAC). HPLC-DAD and HPLC-MS analyses of the juices revealed that commercial juices contained the pomegranate tannin punicalagin (1500-1900 mg/L) while only traces of this compound were detected in the experimental juice obtained from arils in the laboratory. This shows that pomegranate industrial processing extracts some of the hydrolyzable tannins present in the fruit rind. This could account for the higher antioxidant activity of commercial juices compared to the experimental ones. In addition, anthocyanins, ellagic acid derivatives, and hydrolyzable tannins were detected and quantified in the pomegranate juices.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            “Green” Nanotechnologies: Synthesis of Metal Nanoparticles Using Plants

            While metal nanoparticles are being increasingly used in many sectors of the economy, there is growing interest in the biological and environmental safety of their production. The main methods for nanoparticle production are chemical and physical approaches that are often costly and potentially harmful to the environment. The present review is devoted to the possibility of metal nanoparticle synthesis using plant extracts. This approach has been actively pursued in recent years as an alternative, efficient, inexpensive, and environmentally safe method for producing nanoparticles with specified properties. This review provides a detailed analysis of the various factors affecting the morphology, size, and yield of metal nanoparticles. The main focus is on the role of the natural plant biomolecules involved in the bioreduction of metal salts during the nanoparticle synthesis. Examples of effective use of exogenous biomatrices (peptides, proteins, and viral particles) to obtain nanoparticles in plant extracts are discussed.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Punica granatum (pomegranate) and its potential for prevention and treatment of inflammation and cancer.

              The last 7 years have seen over seven times as many publications indexed by Medline dealing with pomegranate and Punica granatum than in all the years preceding them. Because of this, and the virtual explosion of interest in pomegranate as a medicinal and nutritional product that has followed, this review is accordingly launched. The pomegranate tree, Punica granatum, especially its fruit, possesses a vast ethnomedical history and represents a phytochemical reservoir of heuristic medicinal value. The tree/fruit can be divided into several anatomical compartments: (1) seed, (2) juice, (3) peel, (4) leaf, (5) flower, (6) bark, and (7) roots, each of which has interesting pharmacologic activity. Juice and peels, for example, possess potent antioxidant properties, while juice, peel and oil are all weakly estrogenic and heuristically of interest for the treatment of menopausal symptoms and sequellae. The use of juice, peel and oil have also been shown to possess anticancer activities, including interference with tumor cell proliferation, cell cycle, invasion and angiogenesis. These may be associated with plant based anti-inflammatory effects, The phytochemistry and pharmacological actions of all Punica granatum components suggest a wide range of clinical applications for the treatment and prevention of cancer, as well as other diseases where chronic inflammation is believed to play an essential etiologic role.
                Bookmark

                Author and article information

                Contributors
                Role: Academic Editor
                Role: Academic Editor
                Journal
                Molecules
                Molecules
                molecules
                Molecules
                MDPI
                1420-3049
                14 October 2020
                October 2020
                : 25
                : 20
                : 4690
                Affiliations
                [1 ]Department of Botany and Zoology, Stellenbosch University, Private Bag X1, Matieland, Stellenbosch 7602, South Africa; tkmagangana@ 123456sun.ac.za (T.P.M.); makunga@ 123456sun.ac.za (N.P.M.)
                [2 ]Postharvest Technology Research Laboratory, South African Research Chair in Postharvest Technology, Department of Horticultural Sciences, Faculty of AgriSciences, Stellenbosch University, Private Bag X1, Stellenbosch 7602, South Africa
                [3 ]Postharvest Research Laboratory, Department of Botany and Plant Biotechnology, University of Johannesburg, P.O. Box 524, Auckland Park, Johannesburg 2006, South Africa; olaniyif@ 123456uj.ac.za
                Author notes
                [* ]Correspondence: opara@ 123456sun.ac.za ; Tel.: +27-21-808-4064 or +27-21-808-3743
                Author information
                https://orcid.org/0000-0002-2487-0575
                https://orcid.org/0000-0003-1507-251X
                https://orcid.org/0000-0001-8056-7215
                Article
                molecules-25-04690
                10.3390/molecules25204690
                7587354
                33066412
                c6b5784b-a9c4-45aa-895f-c6e5ffba2a4d
                © 2020 by the authors.

                Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).

                History
                : 05 September 2020
                : 07 October 2020
                Categories
                Review

                agriculture waste,antioxidant activity,horticultural processing,pomegranate peel,postharvest physiology,total phenolic content,value addition

                Comments

                Comment on this article