51
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Decade-long safety and function of retroviral-modified chimeric antigen receptor T cells.

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The success of adoptive T cell gene transfer for treatment of cancer and HIV is predicated on generating a response that is both durable and safe. We report long-term results from three clinical trials to evaluate gammaretroviral vector-engineered T cells for HIV. The vector encoded a chimeric antigen receptor (CAR) composed of CD4 linked to the CD3ζ signaling chain (CD4ζ). CAR T cells were detected in 98% of samples tested for at least 11 years after infusion at frequencies that exceeded average T cell levels after most vaccine approaches. The CD4ζ transgene retained expression and function. There was no evidence of vector-induced immortalization of cells; integration site distributions showed no evidence of persistent clonal expansion or enrichment for integration sites near genes implicated in growth control or transformation. The CD4ζ T cells had stable levels of engraftment, with decay half-lives that exceeded 16 years, in marked contrast to previous trials testing engineered T cells. These findings indicate that host immunosuppression before T cell transfer is not required to achieve long-term persistence of gene-modified T cells. Further, our results emphasize the safety of T cells modified by retroviral gene transfer in clinical application, as measured in >500 patient-years of follow-up. Thus, previous safety issues with integrating viral vectors are hematopoietic stem cell or transgene intrinsic, and not a general feature of retroviral vectors. Engineered T cells are a promising form of synthetic biology for long-term delivery of protein-based therapeutics. These results provide a framework to guide the therapy of a wide spectrum of human diseases.

          Related collections

          Author and article information

          Journal
          Sci Transl Med
          Science translational medicine
          American Association for the Advancement of Science (AAAS)
          1946-6242
          1946-6234
          May 02 2012
          : 4
          : 132
          Affiliations
          [1 ] Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104-6076, USA.
          Article
          4/132/132ra53 NIHMS661053
          10.1126/scitranslmed.3003761
          4368443
          22553251
          c6ba5b11-81f7-4368-832a-d0d7cff3e71f
          History

          Comments

          Comment on this article