62
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Defense Priming: An Adaptive Part of Induced Resistance

      , , ,
      Annual Review of Plant Biology
      Annual Reviews

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Priming is an adaptive strategy that improves the defensive capacity of plants. This phenomenon is marked by an enhanced activation of induced defense mechanisms. Stimuli from pathogens, beneficial microbes, or arthropods, as well as chemicals and abiotic cues, can trigger the establishment of priming by acting as warning signals. Upon stimulus perception, changes may occur in the plant at the physiological, transcriptional, metabolic, and epigenetic levels. This phase is called the priming phase. Upon subsequent challenge, the plant effectively mounts a faster and/or stronger defense response that defines the postchallenge primed state and results in increased resistance and/or stress tolerance. Priming can be durable and maintained throughout the plant's life cycle and can even be transmitted to subsequent generations, therefore representing a type of plant immunological memory.

          Related collections

          Most cited references89

          • Record: found
          • Abstract: found
          • Article: not found

          Induced systemic resistance by beneficial microbes.

          Beneficial microbes in the microbiome of plant roots improve plant health. Induced systemic resistance (ISR) emerged as an important mechanism by which selected plant growth-promoting bacteria and fungi in the rhizosphere prime the whole plant body for enhanced defense against a broad range of pathogens and insect herbivores. A wide variety of root-associated mutualists, including Pseudomonas, Bacillus, Trichoderma, and mycorrhiza species sensitize the plant immune system for enhanced defense without directly activating costly defenses. This review focuses on molecular processes at the interface between plant roots and ISR-eliciting mutualists, and on the progress in our understanding of ISR signaling and systemic defense priming. The central role of the root-specific transcription factor MYB72 in the onset of ISR and the role of phytohormones and defense regulatory proteins in the expression of ISR in aboveground plant parts are highlighted. Finally, the ecological function of ISR-inducing microbes in the root microbiome is discussed.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            A flagellin-induced complex of the receptor FLS2 and BAK1 initiates plant defence.

            Plants sense potential microbial invaders by using pattern-recognition receptors to recognize pathogen-associated molecular patterns (PAMPs). In Arabidopsis thaliana, the leucine-rich repeat receptor kinases flagellin-sensitive 2 (FLS2) (ref. 2) and elongation factor Tu receptor (EFR) (ref. 3) act as pattern-recognition receptors for the bacterial PAMPs flagellin and elongation factor Tu (EF-Tu) (ref. 5) and contribute to resistance against bacterial pathogens. Little is known about the molecular mechanisms that link receptor activation to intracellular signal transduction. Here we show that BAK1 (BRI1-associated receptor kinase 1), a leucine-rich repeat receptor-like kinase that has been reported to regulate the brassinosteroid receptor BRI1 (refs 6,7), is involved in signalling by FLS2 and EFR. Plants carrying bak1 mutations show normal flagellin binding but abnormal early and late flagellin-triggered responses, indicating that BAK1 acts as a positive regulator in signalling. The bak1-mutant plants also show a reduction in early, but not late, EF-Tu-triggered responses. The decrease in responses to PAMPs is not due to reduced sensitivity to brassinosteroids. We provide evidence that FLS2 and BAK1 form a complex in vivo, in a specific ligand-dependent manner, within the first minutes of stimulation with flagellin. Thus, BAK1 is not only associated with developmental regulation through the plant hormone receptor BRI1 (refs 6,7), but also has a functional role in PRR-dependent signalling, which initiates innate immunity.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Priming for enhanced defense.

              When plants recognize potential opponents, invading pathogens, wound signals, or abiotic stress, they often switch to a primed state of enhanced defense. However, defense priming can also be induced by some natural or synthetic chemicals. In the primed state, plants respond to biotic and abiotic stress with faster and stronger activation of defense, and this is often linked to immunity and abiotic stress tolerance. This review covers recent advances in disclosing molecular mechanisms of priming. These include elevated levels of pattern-recognition receptors and dormant signaling enzymes, transcription factor HsfB1 activity, and alterations in chromatin state. They also comprise the identification of aspartyl-tRNA synthetase as a receptor of the priming activator β-aminobutyric acid. The article also illustrates the inheritance of priming, exemplifies the role of recently identified priming activators azelaic and pipecolic acid, elaborates on the similarity to defense priming in mammals, and discusses the potential of defense priming in agriculture.
                Bookmark

                Author and article information

                Journal
                Annual Review of Plant Biology
                Annu. Rev. Plant Biol.
                Annual Reviews
                1543-5008
                1545-2123
                April 28 2017
                April 28 2017
                : 68
                : 1
                : 485-512
                Article
                10.1146/annurev-arplant-042916-041132
                28226238
                c6be947d-38ee-4791-82a5-6fe071693905
                © 2017
                History

                Comments

                Comment on this article