7
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Preclinical aspects of anti-VEGF agents for the treatment of wet AMD: ranibizumab and bevacizumab.

      Eye
      Angiogenesis Inhibitors, pharmacokinetics, pharmacology, therapeutic use, Animals, Antibodies, Monoclonal, Antibodies, Monoclonal, Humanized, Disease Models, Animal, Drug Evaluation, Preclinical, Humans, Macular Degeneration, drug therapy, metabolism, Off-Label Use, Vascular Endothelial Growth Factor A, antagonists & inhibitors

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Three anti-vascular endothelial growth factor (VEGF) therapies are currently used for the treatment of patients with wet age-related macular degeneration (AMD): pegaptanib, ranibizumab, and bevacizumab. Ranibizumab is an antibody fragment approved for the treatment of wet AMD. Bevacizumab is a full-length antibody registered for use in oncology but unlicensed for wet AMD. However, it is used off-label worldwide not only for wet AMD but also for various other ocular diseases associated with macular edema and abnormal vessel growth. We consider aspects of ranibizumab and bevacizumab in relation to their molecular characteristics, in vitro and in vivo properties, and preclinical safety data. Before 2009, most studies described the short-term toxicity of bevacizumab in multiple cell types of the eye. Since 2009, an increasing number of studies have compared the properties of ranibizumab and bevacizumab and investigated their impact on retinal cell functioning. Compared with bevacizumab, ranibizumab neutralizes VEGF better at low concentrations, maintains efficacy for longer, and has a higher retinal penetration and potency. Studies in animals demonstrate ranibizumab to be better localized to the injected eye, whereas bevacizumab appears to have a greater effect in the fellow eye. In humans, a localized and systemic effect has been reported for both molecules. In conclusion, overlapping yet distinct pharmacological properties of ranibizumab and bevacizumab indicate that safety or efficacy data from one cannot be extrapolated to the other.

          Related collections

          Author and article information

          Comments

          Comment on this article