278
views
0
recommends
+1 Recommend
5 collections
    2
    shares

      To submit to this journal, please click here

      Your research makes an impact. Our goal is to share all excellent science as broadly and effectively as possible to accelerate discovery and lead a transformation in research communication.

      Learn more and submit here

      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Investigating the role of climate-related disasters in the relationship between food insecurity and mental health for youth aged 15–24 in 142 countries

      research-article
      , * ,
      PLOS Global Public Health
      Public Library of Science

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Food insecurity (FI) represents a major global health challenge. Because climate-related disasters are a determinant of both FI and poor mental health, we investigated whether the severity of these disasters intensifies the relationship between FI and youth mental health. Data on FI and mental health came from the Gallup World Poll, a nationally representative survey of individuals in 142 countries, which included 28,292 youth aged 15–24. Data on climate-related disasters came from the International Disaster Database, a country-level record of disasters. Multilevel negative binomial regression was used to calculate relative risk (RR) of poor mental health. Youth with moderate or severe FI were significantly more likely to report poor mental health experiences compared to those with none/mild FI (moderate: RR 1.37, 95% confidence interval (CI) 1.32–1.41; severe: 1.60, 95% CI 1.54–1.66). We also observed a weak yet significant interaction effect (p<0.0001), which suggested that the country-level relationship between FI and poor mental health is slightly stronger at greater disaster severity. While further research is needed to improve our understanding of these complex relationships, these findings suggest that mental health should be considered when undertaking national climate change actions and that additional FI-related supports may work to improve youth mental health.

          Related collections

          Most cited references77

          • Record: found
          • Abstract: found
          • Article: not found

          The lifelong effects of early childhood adversity and toxic stress.

          Advances in fields of inquiry as diverse as neuroscience, molecular biology, genomics, developmental psychology, epidemiology, sociology, and economics are catalyzing an important paradigm shift in our understanding of health and disease across the lifespan. This converging, multidisciplinary science of human development has profound implications for our ability to enhance the life prospects of children and to strengthen the social and economic fabric of society. Drawing on these multiple streams of investigation, this report presents an ecobiodevelopmental framework that illustrates how early experiences and environmental influences can leave a lasting signature on the genetic predispositions that affect emerging brain architecture and long-term health. The report also examines extensive evidence of the disruptive impacts of toxic stress, offering intriguing insights into causal mechanisms that link early adversity to later impairments in learning, behavior, and both physical and mental well-being. The implications of this framework for the practice of medicine, in general, and pediatrics, specifically, are potentially transformational. They suggest that many adult diseases should be viewed as developmental disorders that begin early in life and that persistent health disparities associated with poverty, discrimination, or maltreatment could be reduced by the alleviation of toxic stress in childhood. An ecobiodevelopmental framework also underscores the need for new thinking about the focus and boundaries of pediatric practice. It calls for pediatricians to serve as both front-line guardians of healthy child development and strategically positioned, community leaders to inform new science-based strategies that build strong foundations for educational achievement, economic productivity, responsible citizenship, and lifelong health.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            The 2020 report of the Lancet Countdown on health and climate change: responding to converging crises

            Executive summary The Lancet Countdown is an international collaboration established to provide an independent, global monitoring system dedicated to tracking the emerging health profile of the changing climate. The 2020 report presents 43 indicators across five sections: climate change impacts, exposures, and vulnerabilities; adaptation, planning, and resilience for health; mitigation actions and health co-benefits; economics and finance; and public and political engagement. This report represents the findings and consensus of the 35 leading academic institutions and UN agencies that make up the Lancet Countdown, and draws on the expertise of climate scientists, geographers, engineers, experts in energy, food, and transport, economists, social, and political scientists, data scientists, public health professionals, and doctors. The emerging health profile of the changing climate 5 years ago, countries committed to limit global warming to “well below 2°C” as part of the landmark Paris Agreement. 5 years on, global carbon dioxide (CO2) emissions continue to rise steadily, with no convincing or sustained abatement, resulting in a rise in the global average temperature of 1·2°C. Indeed, the five hottest years on record have occurred since 2015. The changing climate has already produced considerable shifts in the underlying social and environmental determinants of health at the global level. Indicators in all domains of section 1 (climate change impacts, exposures, and vulnerabilities) are worsening. Concerning, and often accelerating, trends were seen for each of the human symptoms of climate change monitored, with the 2020 indicators presenting the most worrying outlook reported since the Lancet Countdown was first established. These effects are often unequal, disproportionately impacting populations who have contributed the least to the problem. This fact reveals a deeper question of justice, whereby climate change interacts with existing social and economic inequalities and exacerbates longstanding trends within and between countries. An examination of the causes of climate change revealed similar issues, and many carbon-intensive practices and policies lead to poor air quality, poor food quality, and poor housing quality, which disproportionately harm the health of disadvantaged populations. Vulnerable populations were exposed to an additional 475 million heatwave events globally in 2019, which was, in turn, reflected in excess morbidity and mortality (indicator 1.1.2). During the past 20 years, there has been a 53·7% increase in heat-related mortality in people older than 65 years, reaching a total of 296 000 deaths in 2018 (indicator 1.1.3). The high cost in terms of human lives and suffering is associated with effects on economic output, with 302 billion h of potential labour capacity lost in 2019 (indicator 1.1.4). India and Indonesia were among the worst affected countries, seeing losses of potential labour capacity equivalent to 4–6% of their annual gross domestic product (indicator 4.1.3). In Europe in 2018, the monetised cost of heat-related mortality was equivalent to 1·2% of regional gross national income, or the average income of 11 million European citizens (indicator 4.1.2). Turning to extremes of weather, advancements in climate science allow for greater accuracy and certainty in attribution; studies from 2015 to 2020 have shown the fingerprints of climate change in 76 floods, droughts, storms, and temperature anomalies (indicator 1.2.3). Furthermore, there was an increase in the number of days people were exposed to a very high or extremely high risk of wildfire between 2001–04 and 2016–19 in 114 countries (indicator 1.2.1). Correspondingly, 67% of global cities surveyed expected climate change to seriously compromise their public health assets and infrastructure (indicator 2.1.3). The changing climate has downstream effects, impacting broader environmental systems, which in turn harm human health. Global food security is threatened by rising temperatures and increases in the frequency of extreme events; global yield potential for major crops declined by 1·8–5·6% between 1981 and 2019 (indicator 1.4.1). The climate suitability for infectious disease transmission has been growing rapidly since the 1950s, with a 15·0% increase for dengue caused by Aedes albopictus in 2018, and regional increases for malaria and Vibrio bacteria (indicator 1.3.1). Projecting forward, based on current populations, between 145 million people and 565 million people face potential inundation from rising sea levels (indicator 1.5). Despite these clear and escalating signs, the global response to climate change has been muted and national efforts continue to fall short of the commitments made in the Paris Agreement. The carbon intensity of the global energy system has remained almost flat for 30 years, with global coal use increasing by 74% during this time (indicators 3.1.1 and 3.1.2). The reduction in global coal use that had been observed since 2013 has now reversed for the past 2 consecutive years: coal use rose by 1·7% from 2016 to 2018. The health burden is substantial—more than 1 million deaths occur every year as a result of air pollution from coal-fired power, and some 390 000 of these deaths were a result of particulate pollution in 2018 (indicator 3.3). The response in the food and agricultural sector has been similarly concerning. Emissions from livestock grew by 16% from 2000 to 2017, with 93% of emissions coming from ruminant animals (indicator 3.5.1). Likewise, increasingly unhealthy diets are becoming more common worldwide, with excess red meat consumption contributing to some 990 000 deaths in 2017 (indicator 3.5.2). 5 years on from when countries reached an agreement in Paris, a concerning number of indicators are showing an early, but sustained, reversal of previously positive trends identified in past reports (indicators 1.3.2, 3.1.2, and 4.2.3). A growing response from health professionals Despite little economy-wide improvement, relative gains have been made in several key sectors: from 2010 to 2017, the average annual growth rate in renewable energy capacity was 21%, and low-carbon electricity was responsible for 28% of capacity in China in 2017 (indicator 3.1.3). However, the indicators presented in the 2020 report of the Lancet Countdown suggest that some of the most considerable progress was seen in the growing momentum of the health profession’s engagement with climate change globally. Doctors, nurses, and the broader profession have a central role in health system adaptation and mitigation, in understanding and maximising the health benefits of any intervention, and in communicating the need for an accelerated response. In the case of adaptation in national health systems, this change is underway. Impressively, health services in 86 countries are now connected with their equivalent meteorological services to assist in health adaptation planning (indicator 2.2). At least 51 countries have developed plans for national health adaptation, and global spending in health adaptation rose to 5·3% of all adaptation spending in 2018–19, reaching US$18·4 billion in 2019 (indicators 2.1.1 and 2.4). The health-care sector, which was responsible for 4·6% of global greenhouse gas emissions in 2017, is taking early but important steps to reduce its own emissions (indicator 3.6). In the UK, the National Health Service has declared an ambition to deliver a net-zero health service as soon as possible, building on a decade of impressive progress in reducing delivery of care emissions by 57% since 1990, and by 22% when considering the service’s supply chain and broader responsibilities. Elsewhere, the Western Australian Department of Health used its 2016 Public Health Act to conduct Australia’s first climate and health inquiry, and the German Federal Ministry of Health has established a dedicated department on health protection and sustainability responsible for climate-related matters. This progress is becoming more evenly distributed around the world, with 73% of countries making explicit references to health and wellbeing in their Nationally Determined Contributions under the Paris Agreement, and 100% of countries in the South-East Asia and Eastern Mediterranean regions doing so (indicator 5.4). Similarly, least-developed countries and small island developing states are providing increasing global leadership within the UN General Debate on the connections between health and climate change (indicator 5.4). Individual health professionals and their associations are also responding well, with health institutions committing to divest more than $42 billion worth of assets from fossil fuels (indicator 4.2.4). In academia, the publication of original research on health and climate changed has increased by a factor of eight from 2007 to 2019 (indicator 5.3). These shifts are being translated into the broader public discourse. From 2018 to 2019, the coverage of health and climate change in the media increased by 96% world-wide, outpacing the increased coverage of climate change overall, and reaching the highest observed point to date (indicator 5.1). Just as it did with advancements in sanitation and hygiene and with tobacco control, growing and sustained engagement from the health profession during the past 5 years is now beginning to fill a crucial gap in the global response to climate change. The next 5 years: a joint response to two public health crises Dec 12, 2020, will mark the anniversary of the 2015 Paris Agreement, with countries set to update their national commitments and review these commitments every 5 years. These next 5 years will be pivotal. To reach the 1·5°C target and limit temperature rise to “well below 2°C”, the 56 gigatonnes of CO2 equivalent (GtCO2e) currently emitted annually will need to drop to 25 GtCO2e within only 10 years (by 2030). In effect, this decrease will require a 7·6% reduction every year, representing an increase in current levels of national government ambition of a factor of five. Without further intervention during the next 5 years, the reductions required to achieve this target increase to 15·4% every year, moving the 1·5°C target out of reach. The need for accelerated efforts to tackle climate change during the next 5 years will be contextualised by the impacts of, and the global response to, the COVID-19 pandemic. With the loss of life from the pandemic and from climate change measured in the hundreds of thousands, the potential economic costs measured in the trillions, and the broader consequences expected to continue for years to come, the measures taken to address both of these public health crises must be carefully examined and closely linked. Health professionals are well placed to act as a bridge between the two issues, and analogically considering the clinical approach to managing a patient with COVID-19 might be useful in understanding the ways in which these two public health crises should be jointly addressed. First, in an acute setting, a high priority is placed on rapidly diagnosing and comprehensively assessing the situation. Likewise, further work is required to understand the problem, including: which populations are vulnerable to both the pandemic and to climate change; how global and national economies have reacted and adapted, and the health and environmental consequences of these actions; and which aspects of these shifts should be retained to support longer term, sustainable development. Second, appropriate resuscitation and treatment options are reviewed and administered, with careful consideration of any potential side-effects, the goals of care, and the life-long health of the patient. Economic recovery packages that prioritise outdated forms of energy and transport that are fossil fuel intensive will have unintended side-effects, unnecessarily adding to the 7 million people that die every year from air pollution. Instead, investments in health imperatives, such as renewable energy and clean air, active travel infrastructure and physical activity, and resilient and climate-smart health care, will ultimately be more effective than these outdated methods. Finally, attention turns to secondary prevention and long-term recovery, seeking to minimise the permanent effects of the disease and prevent recurrence. Many of the steps taken to prepare for unexpected shocks, such as a pandemic, are similar to those required to adapt to the extremes of weather and new threats expected from climate change. These steps include the need to identify vulnerable populations, assess the capacity of public health systems, develop and invest in preparedness measures, and emphasise community resilience and equity. Indeed, without considering the current and future impacts of climate change, efforts to prepare for future pandemics are likely to be undermined. At every step and in both cases, acting with a level of urgency proportionate to the scale of the threat, adhering to the best available science, and practising clear and consistent communications, are paramount. The consequences of the pandemic will contextualise the economic, social, and environmental policies of governments during the next 5 years, a period that is crucial in determining whether temperatures will remain “well below 2°C”. Unless the global COVID-19 recovery is aligned with the response to climate change, the world will fail to meet the target laid out in the Paris Agreement, damaging public health in the short term and long term.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Statistics notes: Cronbach's alpha

                Bookmark

                Author and article information

                Contributors
                Role: Data curationRole: Formal analysisRole: Project administrationRole: Writing – original draftRole: Writing – review & editing
                Role: ConceptualizationRole: Funding acquisitionRole: SupervisionRole: Writing – review & editing
                Role: Editor
                Journal
                PLOS Glob Public Health
                PLOS Glob Public Health
                plos
                PLOS Global Public Health
                Public Library of Science (San Francisco, CA USA )
                2767-3375
                7 September 2022
                2022
                : 2
                : 9
                : e0000560
                Affiliations
                [001] Department of Public Health Sciences, Queen’s University, Kingston, Ontario, Canada
                The University of Sydney, AUSTRALIA
                Author notes

                The authors have declared that no competing interests exist.

                Author information
                https://orcid.org/0000-0001-6468-4438
                https://orcid.org/0000-0002-0410-3352
                Article
                PGPH-D-22-00135
                10.1371/journal.pgph.0000560
                10021754
                36962728
                c6ce4561-bb31-4967-a1ba-1b8b1aa0623e
                © 2022 Sharpe, Davison

                This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 27 January 2022
                : 28 July 2022
                Page count
                Figures: 3, Tables: 3, Pages: 17
                Funding
                Funded by: Canadian Institutes for Health Research (F. Elgar, PI)
                Award ID: PJT-162463
                Award Recipient :
                This study was supported by a research grant from the Canadian Institutes for Health Research PJT-162463 (CMD Co-Investigator, Frank Elgar Principal Investigator). The first author was supported by a Canadian Institutes for Health Research Fredrick Banting and Charles Best Canada Graduate Scholarship - Master’s Award (IS). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
                Categories
                Research Article
                Medicine and Health Sciences
                Mental Health and Psychiatry
                Social Sciences
                Economics
                Labor Economics
                Employment
                Biology and Life Sciences
                Nutrition
                Diet
                Food
                Medicine and Health Sciences
                Nutrition
                Diet
                Food
                People and Places
                Population Groupings
                Age Groups
                Children
                People and Places
                Population Groupings
                Families
                Children
                Medicine and Health Sciences
                Health Care
                Socioeconomic Aspects of Health
                Medicine and Health Sciences
                Public and Occupational Health
                Socioeconomic Aspects of Health
                Medicine and Health Sciences
                Epidemiology
                Medical Risk Factors
                Medicine and Health Sciences
                Mental Health and Psychiatry
                Psychological Stress
                Biology and Life Sciences
                Psychology
                Psychological Stress
                Social Sciences
                Psychology
                Psychological Stress
                Earth Sciences
                Atmospheric Science
                Meteorology
                Storms
                Custom metadata
                The data from the Gallup World Poll that support the findings of this study were accessed through colleagues at McGill University’s Institute for Global Food Security, who held a partnership with the Food and Agriculture Organization. Restrictions apply to the availability of these data, which were used under license for this study. The data from the International Disaster Database that support the findings of this study are openly available at https://public.emdat.be/.

                Comments

                Comment on this article