57
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      A Bayesian Foundation for Individual Learning Under Uncertainty

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Computational learning models are critical for understanding mechanisms of adaptive behavior. However, the two major current frameworks, reinforcement learning (RL) and Bayesian learning, both have certain limitations. For example, many Bayesian models are agnostic of inter-individual variability and involve complicated integrals, making online learning difficult. Here, we introduce a generic hierarchical Bayesian framework for individual learning under multiple forms of uncertainty (e.g., environmental volatility and perceptual uncertainty). The model assumes Gaussian random walks of states at all but the first level, with the step size determined by the next highest level. The coupling between levels is controlled by parameters that shape the influence of uncertainty on learning in a subject-specific fashion. Using variational Bayes under a mean-field approximation and a novel approximation to the posterior energy function, we derive trial-by-trial update equations which (i) are analytical and extremely efficient, enabling real-time learning, (ii) have a natural interpretation in terms of RL, and (iii) contain parameters representing processes which play a key role in current theories of learning, e.g., precision-weighting of prediction error. These parameters allow for the expression of individual differences in learning and may relate to specific neuromodulatory mechanisms in the brain. Our model is very general: it can deal with both discrete and continuous states and equally accounts for deterministic and probabilistic relations between environmental events and perceptual states (i.e., situations with and without perceptual uncertainty). These properties are illustrated by simulations and analyses of empirical time series. Overall, our framework provides a novel foundation for understanding normal and pathological learning that contextualizes RL within a generic Bayesian scheme and thus connects it to principles of optimality from probability theory.

          Related collections

          Most cited references30

          • Record: found
          • Abstract: found
          • Article: not found

          Bayesian integration in sensorimotor learning.

          When we learn a new motor skill, such as playing an approaching tennis ball, both our sensors and the task possess variability. Our sensors provide imperfect information about the ball's velocity, so we can only estimate it. Combining information from multiple modalities can reduce the error in this estimate. On a longer time scale, not all velocities are a priori equally probable, and over the course of a match there will be a probability distribution of velocities. According to bayesian theory, an optimal estimate results from combining information about the distribution of velocities-the prior-with evidence from sensory feedback. As uncertainty increases, when playing in fog or at dusk, the system should increasingly rely on prior knowledge. To use a bayesian strategy, the brain would need to represent the prior distribution and the level of uncertainty in the sensory feedback. Here we control the statistical variations of a new sensorimotor task and manipulate the uncertainty of the sensory feedback. We show that subjects internally represent both the statistical distribution of the task and their sensory uncertainty, combining them in a manner consistent with a performance-optimizing bayesian process. The central nervous system therefore employs probabilistic models during sensorimotor learning.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The free-energy principle: a rough guide to the brain?

            This article reviews a free-energy formulation that advances Helmholtz's agenda to find principles of brain function based on conservation laws and neuronal energy. It rests on advances in statistical physics, theoretical biology and machine learning to explain a remarkable range of facts about brain structure and function. We could have just scratched the surface of what this formulation offers; for example, it is becoming clear that the Bayesian brain is just one facet of the free-energy principle and that perception is an inevitable consequence of active exchange with the environment. Furthermore, one can see easily how constructs like memory, attention, value, reinforcement and salience might disclose their simple relationships within this framework.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Dendritic computation.

              One of the central questions in neuroscience is how particular tasks, or computations, are implemented by neural networks to generate behavior. The prevailing view has been that information processing in neural networks results primarily from the properties of synapses and the connectivity of neurons within the network, with the intrinsic excitability of single neurons playing a lesser role. As a consequence, the contribution of single neurons to computation in the brain has long been underestimated. Here we review recent work showing that neuronal dendrites exhibit a range of linear and nonlinear mechanisms that allow them to implement elementary computations. We discuss why these dendritic properties may be essential for the computations performed by the neuron and the network and provide theoretical and experimental examples to support this view.
                Bookmark

                Author and article information

                Journal
                Front Hum Neurosci
                Front. Hum. Neurosci.
                Frontiers in Human Neuroscience
                Frontiers Research Foundation
                1662-5161
                02 May 2011
                2011
                : 5
                : 39
                Affiliations
                [1] 1simpleLaboratory for Social and Neural Systems Research, Department of Economics, University of Zurich Zurich, Switzerland
                [2] 2simpleInstitute for Biomedical Engineering, Eidgenössische Technische Hochschule Zurich Zurich, Switzerland
                [3] 3simpleWellcome Trust Centre for Neuroimaging, Institute of Neurology, University College London London, UK
                Author notes

                Edited by: Sven Bestmann, University College London, UK

                Reviewed by: Quentin Huys, University College London, UK; Robert C. Wilson, Princeton University, USA

                *Correspondence: Christoph Mathys, Laboratory for Social and Neural Systems Research, Department of Economics, University of Zurich, Bluemlisalpstrasse 10, 8006 Zurich, Switzerland. e-mail: chmathys@ 123456ethz.ch
                Article
                10.3389/fnhum.2011.00039
                3096853
                21629826
                c6fb6c32-3fa3-4a64-9f24-bc7845e493ca
                Copyright © 2011 Mathys, Daunizeau, Friston and Stephan.

                This is an open-access article subject to a non-exclusive license between the authors and Frontiers Media SA, which permits use, distribution and reproduction in other forums, provided the original authors and source are credited and other Frontiers conditions are complied with.

                History
                : 01 January 2011
                : 29 April 2011
                Page count
                Figures: 14, Tables: 0, Equations: 54, References: 58, Pages: 20, Words: 13614
                Categories
                Neuroscience
                Original Research

                Neurosciences
                variational bayes,volatility,acetylcholine,decision-making,neuromodulation,dopamine,serotonin,hierarchical models

                Comments

                Comment on this article