33
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      A New Approach to Segment Both Main and Peripheral Retinal Vessels Based on Gray-Voting and Gaussian Mixture Model

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Vessel segmentation in retinal fundus images is a preliminary step to clinical diagnosis for some systemic diseases and some eye diseases. The performances of existing methods for segmenting small vessels which are usually of more importance than the main vessels in a clinical diagnosis are not satisfactory in clinical use. In this paper, we present a method for both main and peripheral vessel segmentation. A local gray-level change enhancement algorithm called gray-voting is used to enhance the small vessels, while a two-dimensional Gabor wavelet is used to extract the main vessels. We fuse the gray-voting results with the 2D-Gabor filter results as pre-processing outcome. A Gaussian mixture model is then used to extract vessel clusters from the pre-processing outcome, while small vessels fragments are obtained using another gray-voting process, which complements the vessel cluster extraction already performed. At the last step, we eliminate the fragments that do not belong to the vessels based on the shape of the fragments. We evaluated the approach with two publicly available DRIVE (Staal et al., 2004) and STARE (Hoover et at., 2000) datasets with manually segmented results. For the STARE dataset, when using the second manually segmented results which include much more small vessels than the first manually segmented results as the “gold standard,” this approach achieved an average sensitivity, accuracy and specificity of 65.0%, 92.1% and 97.0%, respectively. The sensitivities of this approach were much higher than those of the other existing methods, with comparable specificities; these results thus demonstrated that this approach was sensitive to detection of small vessels.

          Related collections

          Most cited references22

          • Record: found
          • Abstract: found
          • Article: not found

          Ridge-based vessel segmentation in color images of the retina.

          A method is presented for automated segmentation of vessels in two-dimensional color images of the retina. This method can be used in computer analyses of retinal images, e.g., in automated screening for diabetic retinopathy. The system is based on extraction of image ridges, which coincide approximately with vessel centerlines. The ridges are used to compose primitives in the form of line elements. With the line elements an image is partitioned into patches by assigning each image pixel to the closest line element. Every line element constitutes a local coordinate frame for its corresponding patch. For every pixel, feature vectors are computed that make use of properties of the patches and the line elements. The feature vectors are classified using a kappaNN-classifier and sequential forward feature selection. The algorithm was tested on a database consisting of 40 manually labeled images. The method achieves an area under the receiver operating characteristic curve of 0.952. The method is compared with two recently published rule-based methods of Hoover et al. and Jiang et al. The results show that our method is significantly better than the two rule-based methods (p < 0.01). The accuracy of our method is 0.944 versus 0.947 for a second observer.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Locating blood vessels in retinal images by piecewise threshold probing of a matched filter response.

            We describe an automated method to locate and outline blood vessels in images of the ocular fundus. Such a tool should prove useful to eye care specialists for purposes of patient screening, treatment evaluation, and clinical study. Our method differs from previously known methods in that it uses local and global vessel features cooperatively to segment the vessel network. We evaluate our method using hand-labeled ground truth segmentations of 20 images. A plot of the operating characteristic shows that our method reduces false positives by as much as 15 times over basic thresholding of a matched filter response (MFR), at up to a 75% true positive rate. For a baseline, we also compared the ground truth against a second hand-labeling, yielding a 90% true positive and a 4% false positive detection rate, on average. These numbers suggest there is still room for a 15% true positive rate improvement, with the same false positive rate, over our method. We are making all our images and hand labelings publicly available for interested researchers to use in evaluating related methods.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Retinal vessel segmentation using the 2-D Gabor wavelet and supervised classification.

              We present a method for automated segmentation of the vasculature in retinal images. The method produces segmentations by classifying each image pixel as vessel or nonvessel, based on the pixel's feature vector. Feature vectors are composed of the pixel's intensity and two-dimensional Gabor wavelet transform responses taken at multiple scales. The Gabor wavelet is capable of tuning to specific frequencies, thus allowing noise filtering and vessel enhancement in a single step. We use a Bayesian classifier with class-conditional probability density functions (likelihoods) described as Gaussian mixtures, yielding a fast classification, while being able to model complex decision surfaces. The probability distributions are estimated based on a training set of labeled pixels obtained from manual segmentations. The method's performance is evaluated on publicly available DRIVE (Staal et al., 2004) and STARE (Hoover et al., 2000) databases of manually labeled images. On the DRIVE database, it achieves an area under the receiver operating characteristic curve of 0.9614, being slightly superior than that presented by state-of-the-art approaches. We are making our implementation available as open source MATLAB scripts for researchers interested in implementation details, evaluation, or development of methods.
                Bookmark

                Author and article information

                Contributors
                Role: Academic Editor
                Journal
                PLoS One
                PLoS ONE
                plos
                plosone
                PLoS ONE
                Public Library of Science (San Francisco, CA USA )
                1932-6203
                5 June 2015
                2015
                : 10
                : 6
                : e0127748
                Affiliations
                [1 ]Department of Biomedical Engineering, School of Geoscience and Info-Physics, Central South University, Changsha, Hunan, P. R. China
                [2 ]Department of Radiology, The University of Chicago, Chicago, Illinois, United States of America
                Institute of Automation, Chinese Academy of Sciences, CHINA
                Author notes

                Competing Interests: The authors have declared that no competing interests exist.

                Conceived and designed the experiments: PD KS. Performed the experiments: HL PD KS. Analyzed the data: HL PD KS HS LL JW YLZ YQZ. Contributed reagents/materials/analysis tools: HL PD KS HS LL JW YLZ YQZ. Wrote the paper: PD HL KS HS JW.

                Article
                PONE-D-15-02413
                10.1371/journal.pone.0127748
                4457795
                26047128
                c6febcfd-4bf9-4ada-a438-a7556268e6d0

                This is an open access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication

                History
                : 18 January 2015
                : 19 April 2015
                Page count
                Figures: 11, Tables: 3, Pages: 22
                Funding
                This work was supported by the National Natural Science Foundation of China under Grants 81171420.
                Categories
                Research Article
                Custom metadata
                All relevant data are available within the paper and its supporting information files.

                Uncategorized
                Uncategorized

                Comments

                Comment on this article