10
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      The effects of excitotoxic lesion of the medial prefrontal cortex on latent inhibition, prepulse inhibition, food hoarding, elevated plus maze, active avoidance and locomotor activity in the rat

      , , ,
      Neuroscience
      Elsevier BV

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Latent inhibition is a measure of retarded conditioning to a previously presented nonreinforced stimulus that is impaired in schizophrenic patients and in rats treated with amphetamine. In terms of neural substrates, latent inhibition depends on the integrity of the nucleus accumbens and the inputs to this structure from the hippocampal formation and adjacent cortical areas. Since another major source of input to the nucleus accumbens is the medial prefrontal cortex, and there are numerous demonstrations that manipulations of this region can modify ventral striatal dopamine, we investigated the effects of N-methyl-D-aspartate lesion to the medial prefrontal cortex on latent inhibition, assessed in an off-baseline conditioned emotional response procedure in rats licking for water. In addition, the effects of the medial prefrontal cortex lesion were assessed on a battery of tasks potentially sensitive to medial prefrontal cortex damage, including spontaneous and amphetamine-induced activity, elevated plus maze exploration, food hoarding, prepulse inhibition, and active avoidance. The lesion decreased hoarding behaviour and increased spontaneous exploratory activity in the open field, while exerting only mild effects on amphetamine-induced activity. Prepulse inhibition, exploration of the elevated plus maze, and the acquisition of two-way active avoidance were unaffected by the lesion. Likewise, latent inhibition was left intact following the lesion, suggesting that neither the destruction of the intrinsic cells of the medial prefrontal cortex nor any potential lesion-induced changes in subcortical dopamine, affect latent inhibition.

          Related collections

          Author and article information

          Journal
          Neuroscience
          Neuroscience
          Elsevier BV
          03064522
          February 1998
          February 1998
          : 84
          : 2
          : 431-442
          Article
          10.1016/S0306-4522(97)00521-6
          9539214
          c70001ee-c2f8-49a0-a65b-23f3f73747b9
          © 1998

          https://www.elsevier.com/tdm/userlicense/1.0/

          History

          Comments

          Comment on this article