4
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Proteasome Inhibitors Cause Induction of Heat Shock Proteins and Trehalose, Which Together Confer Thermotolerance inSaccharomyces cerevisiae

      ,
      Molecular and Cellular Biology
      American Society for Microbiology

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          An accumulation in cells of unfolded proteins is believed to be the common signal triggering the induction of heat shock proteins (hsps). Accordingly, in Saccharomyces cerevisiae, inhibition of protein breakdown at 30°C with the proteasome inhibitor MG132 caused a coordinate induction of many heat shock proteins within 1 to 2 h. Concomitantly, MG132, at concentrations that had little or no effect on growth rate, caused a dramatic increase in the cells’ resistance to very high temperature. The magnitude of this effect depended on the extent and duration of the inhibition of proteolysis. A similar induction of hsps and thermotolerance was seen with another proteasome inhibitor, clasto-lactacystin β-lactone, but not with an inhibitor of vacuolar proteases. Surprisingly, when the reversible inhibitor MG132 was removed, thermotolerance decreased rapidly, while synthesis of hsps continued to increase. In addition, exposure to MG132 and 37°C together had synergistic effects in promoting thermotolerance but did not increase hsp expression beyond that seen with either stimulus alone. Although thermotolerance did not correlate with hsp content, another thermoprotectant trehalose accumulated upon exposure of cells to MG132, and the cellular content of this disaccharide, unlike that of hsps, quickly decreased upon removal of MG132. Also, MG132 and 37°C had additive effects in causing trehalose accumulation. Thus, the resistance to heat induced by proteasome inhibitors is not just due to induction of hsps but also requires a short-lived metabolite, probably trehalose, which accumulates when proteolysis is reduced.

          Related collections

          Author and article information

          Journal
          Molecular and Cellular Biology
          Mol. Cell. Biol.
          American Society for Microbiology
          0270-7306
          1098-5549
          January 01 1998
          January 01 1998
          January 01 1998
          : 18
          : 1
          : 30-38
          Article
          10.1128/MCB.18.1.30
          c704714e-f1f4-4c14-ab05-ff163a844d92
          © 1998
          History

          Comments

          Comment on this article