42
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Leukocyte Gene Expression in Patients with Medication Refractory Depression before and after Treatment with ECT or Isoflurane Anesthesia: A Pilot Study

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Objective. To evaluate leukocyte gene expression for 9 selected genes (mRNAs) as biological markers in patients with medication refractory depression before and after treatment with ECT or isoflurane anesthesia (ISO). Methods. In a substudy of a nonrandomized open-label trial comparing effects of ECT to ISO therapy, blood samples were obtained before and after treatment from 22 patients with refractory depression, and leukocyte mRNA was assessed by quantitative PCR. Patients' mRNAs were also compared to 17 healthy controls. Results. Relative to controls, patients before treatment showed significantly higher IL10 and DBI and lower ADRA2A and ASIC3 mRNA ( P < 0.025). Both ECT and ISO induced significant decreases after treatment in 4 genes: IL10, NR3C1, DRD4, and Sult1A1. After treatment, patients' DBI, ASIC3, and ADRA2A mRNA remained dysregulated. Conclusion. Significant differences from controls and/or significant changes after ECT or ISO treatment were observed for 7 of the 9 mRNAs studied. Decreased expression of 4 genes after effective treatment with either ECT or ISO suggests possible overlap of underlying mechanisms. Three genes showing dysregulation before and after treatment may be trait-like biomarkers of medication refractory depression. Gene expression for these patients has the potential to facilitate diagnosis, clarify pathophysiology, and identify potential biomarkers for treatment effects.

          Related collections

          Most cited references83

          • Record: found
          • Abstract: found
          • Article: not found

          Acute and longer-term outcomes in depressed outpatients requiring one or several treatment steps: a STAR*D report.

          This report describes the participants and compares the acute and longer-term treatment outcomes associated with each of four successive steps in the Sequenced Treatment Alternatives to Relieve Depression (STAR*D) trial. A broadly representative adult outpatient sample with nonpsychotic major depressive disorder received one (N=3,671) to four (N=123) successive acute treatment steps. Those not achieving remission with or unable to tolerate a treatment step were encouraged to move to the next step. Those with an acceptable benefit, preferably symptom remission, from any particular step could enter a 12-month naturalistic follow-up phase. A score of or=11 (HRSD(17)>or=14) defined relapse. The QIDS-SR(16) remission rates were 36.8%, 30.6%, 13.7%, and 13.0% for the first, second, third, and fourth acute treatment steps, respectively. The overall cumulative remission rate was 67%. Overall, those who required more treatment steps had higher relapse rates during the naturalistic follow-up phase. In addition, lower relapse rates were found among participants who were in remission at follow-up entry than for those who were not after the first three treatment steps. When more treatment steps are required, lower acute remission rates (especially in the third and fourth treatment steps) and higher relapse rates during the follow-up phase are to be expected. Studies to identify the best multistep treatment sequences for individual patients and the development of more broadly effective treatments are needed.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Regulation of BDNF and trkB mRNA in rat brain by chronic electroconvulsive seizure and antidepressant drug treatments.

            The influence of chronic electroconvulsive seizure (ECS) or antidepressant drug treatments on expression of brain-derived neurotrophic factor (BDNF) and its receptor, trkB, was examined by in situ hybridization and Northern blot. In frontal cortex, acute ECS increased BDNF mRNA approximately twofold, an effect significantly augmented by a prior course of chronic ECS treatment (10 d). In the hippocampus, the influence of chronic ECS varied between the major subfields. In the dentate gyrus granule cell layer, chronic ECS decreased the acute induction of BDNF and trkB mRNA by approximately 50%, but prolonged their expression: levels remained elevated two- to threefold 18 hr later after the last chronic ECS treatment, but returned to control 18 hr after acute ECS. In CA3 and CA1 pyramidal cell layers, chronic ECS significantly elevated the acute induction of BDNF, and tended to prolong the expression of BDNF and trkB mRNA. A similar effect was observed in layer 2 of the piriform cortex, where chronic ECS significantly increased the acute induction and prolonged the expression of BDNF and trkB mRNA. Chronic (21 d), but not acute (1 d), administration of several different antidepressant drugs, including tranylcypromine, sertraline, desipramine, or mianserin, significantly increased BDNF mRNA and all but mianserin increased trkB mRNA in hippocampus. In contrast, chronic administration of nonantidepressant psychotropic drugs, including morphine, cocaine, or haloperidol, did not increase levels of BDNF mRNA. Furthermore, chronic administration of ECS or antidepressant drugs completely blocked the down-regulation of BDNF mRNA in the hippocampus in response to restraint stress. The enhanced induction and prolonged expression of BDNF in response to chronic ECS and antidepressant drug treatments could promote neuronal survival, and protect neurons from the damaging effects of stress.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Candidate Genes Expression Profile Associated with Antidepressants Response in the GENDEP Study: Differentiating between Baseline ‘Predictors' and Longitudinal ‘Targets'

              To improve the ‘personalized-medicine' approach to the treatment of depression, we need to identify biomarkers that, assessed before starting treatment, predict future response to antidepressants (‘predictors'), as well as biomarkers that are targeted by antidepressants and change longitudinally during the treatment (‘targets'). In this study, we tested the leukocyte mRNA expression levels of genes belonging to glucocorticoid receptor (GR) function (FKBP-4, FKBP-5, and GR), inflammation (interleukin (IL)-1α, IL-1β, IL-4, IL-6, IL-7, IL-8, IL-10, macrophage inhibiting factor (MIF), and tumor necrosis factor (TNF)-α), and neuroplasticity (brain-derived neurotrophic factor (BDNF), p11 and VGF), in healthy controls (n=34) and depressed patients (n=74), before and after 8 weeks of treatment with escitalopram or nortriptyline, as part of the Genome-based Therapeutic Drugs for Depression study. Non-responders had higher baseline mRNA levels of IL-1β (+33%), MIF (+48%), and TNF-α (+39%). Antidepressants reduced the levels of IL-1β (−6%) and MIF (−24%), and increased the levels of GR (+5%) and p11 (+8%), but these changes were not associated with treatment response. In contrast, successful antidepressant response was associated with a reduction in the levels of IL-6 (−9%) and of FKBP5 (−11%), and with an increase in the levels of BDNF (+48%) and VGF (+20%)—that is, response was associated with changes in genes that did not predict, at the baseline, the response. Our findings indicate a dissociation between ‘predictors' and ‘targets' of antidepressant responders. Indeed, while higher levels of proinflammatory cytokines predict lack of future response to antidepressants, changes in inflammation associated with antidepressant response are not reflected by all cytokines at the same time. In contrast, modulation of the GR complex and of neuroplasticity is needed to observe a therapeutic antidepressant effect.
                Bookmark

                Author and article information

                Journal
                Depress Res Treat
                Depress Res Treat
                DRT
                Depression Research and Treatment
                Hindawi Publishing Corporation
                2090-1321
                2090-133X
                2014
                13 April 2014
                : 2014
                : 582380
                Affiliations
                1Department of Anesthesiology, University of Utah Health Sciences Center, Salt Lake City, UT, USA
                2Neuroscience Program, University of Utah Health Sciences Center, Salt Lake City, UT, USA
                3Department of Psychiatry, University of Utah, Salt Lake City, UT, USA
                4Department of Exercise and Sport Science, University of Utah, Salt Lake City, UT, USA
                Author notes

                Academic Editor: Michael Berk

                Article
                10.1155/2014/582380
                4009159
                c70d5c6e-f1e6-4660-8330-3fb79c24eefb
                Copyright © 2014 E. Iacob et al.

                This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 29 January 2014
                : 22 March 2014
                Funding
                Funded by: Department of Anesthesiology - University of Utah - School of Medicine
                Categories
                Research Article

                Neurology
                Neurology

                Comments

                Comment on this article