45
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Talking off the top of your head: toward a mental prosthesis utilizing event-related brain potentials.

      Electroencephalography and clinical neurophysiology
      Adult, Algorithms, Brain, physiology, Communication, Communication Aids for Disabled, Computers, Electroencephalography, Evoked Potentials, Female, Humans, Male, Thinking, Time Factors

      Read this article at

      ScienceOpenPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          This paper describes the development and testing of a system whereby one can communicate through a computer by using the P300 component of the event-related brain potential (ERP). Such a system may be used as a communication aid by individuals who cannot use any motor system for communication (e.g., 'locked-in' patients). The 26 letters of the alphabet, together with several other symbols and commands, are displayed on a computer screen which serves as the keyboard or prosthetic device. The subject focuses attention successively on the characters he wishes to communicate. The computer detects the chosen character on-line and in real time. This detection is achieved by repeatedly flashing rows and columns of the matrix. When the elements containing the chosen character are flashed, a P300 is elicited, and it is this P300 that is detected by the computer. We report an analysis of the operating characteristics of the system when used with normal volunteers, who took part in 2 experimental sessions. In the first session (the pilot study/training session) subjects attempted to spell a word and convey it to a voice synthesizer for production. In the second session (the analysis of the operating characteristics of the system) subjects were required simply to attend to individual letters of a word for a specific number of trials while data were recorded for off-line analysis. The analyses suggest that this communication channel can be operated accurately at the rate of 0.20 bits/sec. In other words, under the conditions we used, subjects can communicate 12.0 bits, or 2.3 characters, per min.

          Related collections

          Author and article information

          Comments

          Comment on this article