14
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Alteration of synaptic connectivity of oligodendrocyte precursor cells following demyelination

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Oligodendrocyte precursor cells (OPCs) are a major source of remyelinating oligodendrocytes in demyelinating diseases such as Multiple Sclerosis (MS). While OPCs are innervated by unmyelinated axons in the normal brain, the fate of such synaptic contacts after demyelination is still unclear. By combining electrophysiology and immunostainings in different transgenic mice expressing fluorescent reporters, we studied the synaptic innervation of OPCs in the model of lysolecithin (LPC)-induced demyelination of corpus callosum. Synaptic innervation of reactivated OPCs in the lesion was revealed by the presence of AMPA receptor-mediated synaptic currents, VGluT1+ axon-OPC contacts in 3D confocal reconstructions and synaptic junctions observed by electron microscopy. Moreover, 3D confocal reconstructions of VGluT1 and NG2 immunolabeling showed the existence of glutamatergic axon-OPC contacts in post-mortem MS lesions. Interestingly, patch-clamp recordings in LPC-induced lesions demonstrated a drastic decrease in spontaneous synaptic activity of OPCs early after demyelination that was not caused by an impaired conduction of compound action potentials. A reduction in synaptic connectivity was confirmed by the lack of VGluT1+ axon-OPC contacts in virtually all rapidly proliferating OPCs stained with EdU (50-ethynyl-20-deoxyuridine). At the end of the massive proliferation phase in lesions, the proportion of innervated OPCs rapidly recovers, although the frequency of spontaneous synaptic currents did not reach control levels. In conclusion, our results demonstrate that newly-generated OPCs do not receive synaptic inputs during their active proliferation after demyelination, but gain synapses during the remyelination process. Hence, glutamatergic synaptic inputs may contribute to inhibit OPC proliferation and might have a physiopathological relevance in demyelinating disorders.

          Related collections

          Most cited references39

          • Record: found
          • Abstract: found
          • Article: not found

          Glutamatergic synapses on oligodendrocyte precursor cells in the hippocampus.

          Fast excitatory neurotransmission in the central nervous system occurs at specialized synaptic junctions between neurons, where a high concentration of glutamate directly activates receptor channels. Low-affinity AMPA (alpha-amino-3-hydroxy-5-methyl isoxazole propionic acid) and kainate glutamate receptors are also expressed by some glial cells, including oligodendrocyte precursor cells (OPCs). However, the conditions that result in activation of glutamate receptors on these non-neuronal cells are not known. Here we report that stimulation of excitatory axons in the hippocampus elicits inward currents in OPCs that are mediated by AMPA receptors. The quantal nature of these responses and their rapid kinetics indicate that they are produced by the exocytosis of vesicles filled with glutamate directly opposite these receptors. Some of these AMPA receptors are permeable to calcium ions, providing a link between axonal activity and internal calcium levels in OPCs. Electron microscopic analysis revealed that vesicle-filled axon terminals make synaptic junctions with the processes of OPCs in both the young and adult hippocampus. These results demonstrate the existence of a rapid signalling pathway from pyramidal neurons to OPCs in the mammalian hippocampus that is mediated by excitatory, glutamatergic synapses.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Polydendrocytes (NG2 cells): multifunctional cells with lineage plasticity.

            NG2 cells (also known as polydendrocytes) are a population of CNS cells that are distinct from neurons, mature oligodendrocytes, astrocytes and microglia. They can be identified by the expression of the proteoglycan NG2, have a highly branched morphology and are distributed throughout the grey and white matter. They differentiate into oligodendrocytes in vitro and have often been equated with oligodendrocyte precursor cells. However, whether polydendrocytes are multipotential cells that can give rise to neurons and astrocytes as well as oligodendrocytes is now highly debated. Furthermore, electrophysiological studies indicate that polydendrocytes receive synaptic input from neurons, suggesting that they are integrated in the neural network. This Review highlights recent findings and unresolved questions related to the lineage and function of polydendrocytes in the CNS.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              NMDA receptors are expressed in oligodendrocytes and activated in ischaemia.

              Glutamate-mediated damage to oligodendrocytes contributes to mental or physical impairment in periventricular leukomalacia (pre- or perinatal white matter injury leading to cerebral palsy), spinal cord injury, multiple sclerosis and stroke. Unlike neurons, white matter oligodendrocytes reportedly lack NMDA (N-methyl-d-aspartate) receptors. It is believed that glutamate damages oligodendrocytes, especially their precursor cells, by acting on calcium-permeable AMPA (alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid)/kainate receptors alone or by reversing cystine-glutamate exchange and depriving cells of antioxidant protection. Here we show that precursor, immature and mature oligodendrocytes in the white matter of the cerebellum and corpus callosum exhibit NMDA-evoked currents, mediated by receptors that are blocked only weakly by Mg2+ and that may contain NR1, NR2C and NR3 NMDA receptor subunits. NMDA receptors are present in the myelinating processes of oligodendrocytes, where the small intracellular space could lead to a large rise in intracellular ion concentration in response to NMDA receptor activation. Simulating ischaemia led to development of an inward current in oligodendrocytes, which was partly mediated by NMDA receptors. These results point to NMDA receptors of unusual subunit composition as a potential therapeutic target for preventing white matter damage in a variety of diseases.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Cell Neurosci
                Front Cell Neurosci
                Front. Cell. Neurosci.
                Frontiers in Cellular Neuroscience
                Frontiers Media S.A.
                1662-5102
                17 March 2015
                2015
                : 9
                : 77
                Affiliations
                [1] 1INSERM U1127, Institut du Cerveau et de la Moelle Epinière Paris, France
                [2] 2Université Paris 6, Sorbonne Paris Cité, UMR-S1127 Paris, France
                [3] 3Centre National de la Recherche Scientifique UMR 7225 Paris, France
                [4] 4INSERM U1128 Paris, France
                [5] 5Université Paris Descartes, Sorbonne Paris Cité Paris, France
                Author notes

                Edited by: Francesco Moccia, University of Pavia, Italy

                Reviewed by: Thomas Mittmann, Johannes Gutenberg University Mainz, Germany; Carlos Matute, University of the Basque Country, Spain

                *Correspondence: Brahim Nait-Oumesmar, Institut du Cerveau et de la Moelle Epinière, INSERM/UPMC, UMR_S 1127, Centre National de la Recherche Scientifique UMR 7225, Hôpital Pitié Salpêtrière, 75013 Paris, France brahim.nait_oumesmar@ 123456upmc.fr ;
                María Cecilia Angulo, Laboratoire de Neurophysiologie et Nouvelles Microscopies, INSERM U1128, Université Paris Descartes, 75006 Paris, France maria-cecilia.angulo@ 123456parisdescartes.fr

                †Aurélia Sahel and Fernando C. Ortiz are co-first authors.

                ‡María Cecilia Angulo and Brahim Nait-Oumesmar are co-last authors.

                Article
                10.3389/fncel.2015.00077
                4362325
                25852473
                c7115b66-425d-426f-a771-543e548be264
                Copyright © 2015 Sahel, Ortiz, Kerninon, Maldonado, Angulo and Nait-Oumesmar.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 30 November 2014
                : 21 February 2014
                Page count
                Figures: 7, Tables: 0, Equations: 0, References: 47, Pages: 12, Words: 8201
                Categories
                Neuroscience
                Original Research

                Neurosciences
                ng2 cells,oligodendrocyte precursor cells,oligodendrocyte,neuron-opc synapses,demyelination,multiple sclerosis

                Comments

                Comment on this article