26
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Insulin-Like Growth Factor Binding Protein-6 Promotes the Differentiation of Placental Mesenchymal Stem Cells into Skeletal Muscle Independent of Insulin-Like Growth Factor Receptor-1 and Insulin Receptor

      research-article
      1 , 2 , 3 , 4 , 5 , 6 , 1 , 2 , 3 , 7 ,
      Stem Cells International
      Hindawi

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          As mesenchymal stem cells (MSCs) are being investigated for regenerative therapies to be used in the clinic, delineating the roles of the IGF system in MSC growth and differentiation, in vitro, is vital in developing these cellular therapies to treat degenerative diseases. Muscle differentiation is a multistep process, starting with commitment to the muscle lineage and ending with the formation of multinucleated fibers. Insulin-like growth factor binding protein-6 (IGFBP-6), relative to other IGFBPs, has high affinity for IGF-2. However, the role of IGFBP-6 in muscle development has not been clearly defined. Our previous studies showed that in vitro extracellular IGFBP-6 increased myogenesis in early stages and could enhance the muscle differentiation process in the absence of IGF-2. In this study, we identified the signal transduction mechanisms of IGFBP-6 on muscle differentiation by placental mesenchymal stem cells (PMSCs). We showed that muscle differentiation required activation of both AKT and MAPK pathways. Interestingly, we demonstrated that IGFBP-6 could compensate for IGF-2 loss and help enhance the muscle differentiation process by triggering predominantly the MAPK pathway independent of activating either IGF-1R or the insulin receptor (IR). These findings indicate the complex interactions between IGFBP-6 and IGFs in PMSC differentiation into the skeletal muscle and that the IGF signaling axis, specifically involving IGFBP-6, is important in muscle differentiation. Moreover, although the major role of IGFBP-6 is IGF-2 inhibition, it is not necessarily the case that IGFBP-6 is the main modulator of IGF-2.

          Related collections

          Most cited references38

          • Record: found
          • Abstract: found
          • Article: not found

          Specificity of receptor tyrosine kinase signaling: transient versus sustained extracellular signal-regulated kinase activation.

          C Marshall (1995)
          A number of different intracellular signaling pathways have been shown to be activated by receptor tyrosine kinases. These activation events include the phosphoinositide 3-kinase, 70 kDa S6 kinase, mitogen-activated protein kinase (MAPK), phospholipase C-gamma, and the Jak/STAT pathways. The precise role of each of these pathways in cell signaling remains to be resolved, but studies on the differentiation of mammalian PC12 cells in tissue culture and the genetics of cell fate determination in Drosophila and Caenorhabditis suggest that the extracellular signal-regulated kinase (ERK-regulated) MAPK pathway may be sufficient for these cellular responses. Experiments with PC12 cells also suggest that the duration of ERK activation is critical for cell signaling decisions.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Insulin-like growth factors and their binding proteins: biological actions.

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Mice carrying null mutations of the genes encoding insulin-like growth factor I (Igf-1) and type 1 IGF receptor (Igf1r).

              Newborn mice homozygous for a targeted disruption of insulin-like growth factor gene (Igf-1) exhibit a growth deficiency similar in severity to that previously observed in viable Igf-2 null mutants (60% of normal birthweight). Depending on genetic background, some of the Igf-1(-/-) dwarfs die shortly after birth, while others survive and reach adulthood. In contrast, null mutants for the Igf1r gene die invariably at birth of respiratory failure and exhibit a more severe growth deficiency (45% normal size). In addition to generalized organ hypoplasia in Igf1r(-/-) embryos, including the muscles, and developmental delays in ossification, deviations from normalcy were observed in the central nervous system and epidermis. Igf-1(-/-)/Igf1r(-/-) double mutants did not differ in phenotype from Igf1r(-/-) single mutants, while in Igf-2(-)/Igf1r(-/-) and Igf-1(-/-)/Igf-2(-) double mutants, which are phenotypically identical, the dwarfism was further exacerbated (30% normal size). The roles of the IGFs in mouse embryonic development, as revealed from the phenotypic differences between these mutants, are discussed.
                Bookmark

                Author and article information

                Contributors
                Journal
                Stem Cells Int
                Stem Cells Int
                SCI
                Stem Cells International
                Hindawi
                1687-966X
                1687-9678
                2019
                17 February 2019
                : 2019
                : 9245938
                Affiliations
                1Western University, Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, London, Ontario, Canada
                2Western University, Children's Health Research Institute, London, Ontario, Canada
                3Western University, Lawson Health Research Institute, London, Ontario, Canada
                4King Abdullah International Medical Research Center, Jeddah, Saudi Arabia
                5King Saud bin Abdulaziz University for Health Sciences, Jeddah, Saudi Arabia
                6Ministry of National Guard Health Affairs, Jeddah, Saudi Arabia
                7Western University, Department of Paediatrics, Schulich School of Medicine and Dentistry, London, Ontario, Canada
                Author notes

                Guest Editor: Ming Li

                Author information
                http://orcid.org/0000-0001-8868-2066
                http://orcid.org/0000-0003-3479-9132
                Article
                10.1155/2019/9245938
                6397983
                c7137b87-9e4d-4710-a94a-0671f69e5bb3
                Copyright © 2019 Doaa Aboalola and Victor K. M. Han.

                This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 17 October 2018
                : 16 December 2018
                : 6 January 2019
                Funding
                Funded by: Canadian Institutes of Health Research
                Award ID: 111024
                Categories
                Research Article

                Molecular medicine
                Molecular medicine

                Comments

                Comment on this article