18
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Small Molecules in Rare Tumors: Emerging Role of MicroRNAs in GIST

      review-article
      1 , 2
      International Journal of Molecular Sciences
      MDPI
      GIST, microRNA, isomiR, non-coding RNA, biomarker

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Gastrointestinal stromal tumors (GISTs) are the most common mesenchymal tumors of gastrointestinal tract. GISTs have very different clinical phenotypes and underlying molecular characteristics that are not yet completely understood. microRNAs (miRNAs) have been shown to participate in carcinogenesis pathways through post-transcriptional regulation of gene expression in different tumors. Over the last years emerging evidence has highlighted the role of miRNAs in GISTs. This review provides an overview of original research papers that analyze miRNA deregulation patterns, functional role, diagnostic, therapeutic and prognostic implications in GIST as well as provides directions for further research in the field.

          Related collections

          Most cited references69

          • Record: found
          • Abstract: found
          • Article: not found

          PDGFRA activating mutations in gastrointestinal stromal tumors.

          Most gastrointestinal stromal tumors (GISTs) have activating mutations in the KIT receptor tyrosine kinase, and most patients with GISTs respond well to Gleevec, which inhibits KIT kinase activity. Here we show that approximately 35% (14 of 40) of GISTs lacking KIT mutations have intragenic activation mutations in the related receptor tyrosine kinase, platelet-derived growth factor receptor alpha (PDGFRA). Tumors expressing KIT or PDGFRA oncoproteins were indistinguishable with respect to activation of downstream signaling intermediates and cytogenetic changes associated with tumor progression. Thus, KIT and PDGFRA mutations appear to be alternative and mutually exclusive oncogenic mechanisms in GISTs.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The microcosmos of cancer.

            The discovery of microRNAs (miRNAs) almost two decades ago established a new paradigm of gene regulation. During the past ten years these tiny non-coding RNAs have been linked to virtually all known physiological and pathological processes, including cancer. In the same way as certain key protein-coding genes, miRNAs can be deregulated in cancer, in which they can function as a group to mark differentiation states or individually as bona fide oncogenes or tumour suppressors. Importantly, miRNA biology can be harnessed experimentally to investigate cancer phenotypes or used therapeutically as a target for drugs or as the drug itself.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Target RNA-directed trimming and tailing of small silencing RNAs.

              In Drosophila, microRNAs (miRNAs) typically guide Argonaute1 to repress messenger RNA (mRNA), whereas small interfering RNAs (siRNAs) guide Argonaute2 to destroy viral and transposon RNA. Unlike siRNAs, miRNAs rarely form extensive numbers of base pairs to the mRNAs they regulate. We find that extensive complementarity between a target RNA and an Argonaute1-bound miRNA triggers miRNA tailing and 3'-to-5' trimming. In flies, Argonaute2-bound small RNAs--but not those bound to Argonaute1--bear a 2'-O-methyl group at their 3' ends. This modification blocks target-directed small RNA remodeling: In flies lacking Hen1, the enzyme that adds the 2'-O-methyl group, Argonaute2-associated siRNAs are tailed and trimmed. Target complementarity also affects small RNA stability in human cells. These results provide an explanation for the partial complementarity between animal miRNAs and their targets.
                Bookmark

                Author and article information

                Journal
                Int J Mol Sci
                Int J Mol Sci
                ijms
                International Journal of Molecular Sciences
                MDPI
                1422-0067
                30 January 2018
                February 2018
                : 19
                : 2
                : 397
                Affiliations
                [1 ]Institute for Digestive Research, Academy of Medicine, Lithuanian University of Health Sciences, Eiveniu str. 2, LT-50009 Kaunas, Lithuania; juozas.kupcinskas@ 123456lsmuni.lt ; Tel.: +370-37-326898
                [2 ]Department of Gastroenterology, Academy of Medicine, Lithuanian University of Health Sciences, Eiveniu str. 2, LT-50009 Kaunas, Lithuania
                Author information
                https://orcid.org/0000-0002-8760-7416
                Article
                ijms-19-00397
                10.3390/ijms19020397
                5855619
                29385688
                c723c331-f917-490b-8a8b-625891d5b8db
                © 2018 by the author.

                Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).

                History
                : 16 January 2018
                : 24 January 2018
                Categories
                Review

                Molecular biology
                gist,microrna,isomir,non-coding rna,biomarker
                Molecular biology
                gist, microrna, isomir, non-coding rna, biomarker

                Comments

                Comment on this article