6
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Cardiomyocyte-specific deletion of endothelin receptor A rescues aging-associated cardiac hypertrophy and contractile dysfunction: role of autophagy.

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Cardiac aging is manifested as cardiac remodeling and contractile dysfunction although precise mechanisms remain elusive. This study was designed to examine the role of endothelin-1 (ET-1) in aging-associated myocardial morphological and contractile defects. Echocardiographic and cardiomyocyte contractile properties were evaluated in young (5-6 months) and old (26-28 months) C57BL/6 wild-type and cardiomyocyte-specific ET(A) receptor knockout (ETAKO) mice. Cardiac ROS production and histology were examined. Our data revealed that ETAKO mice displayed an improved survival. Aging increased plasma levels of ET-1 and Ang II, compromised cardiac function (fractional shortening, cardiomyocyte peak shortening, maximal velocity of shortening/relengthening and prolonged relengthening) and intracellular Ca(2+) handling (reduced intracellular Ca(2+) release and decay), the effects of which with the exception of ET-1 and Ang II levels was improved by ETAKO. Histological examination displayed cardiomyocyte hypertrophy and interstitial fibrosis associated with cardiac remodeling in aged C57 mice, which were alleviated in ETAKO mice. Aging promoted ROS generation, protein damage, ER stress, upregulated GATA4, ANP, NFATc3 and the autophagosome cargo protein p62, downregulated intracellular Ca(2+) regulatory proteins SERCA2a and phospholamban as well as the autophagic markers Beclin-1, Atg7, Atg5 and LC3BII, which were ablated by ETAKO. ET-1 triggered a decrease in autophagy and increased hypertrophic markers in vitro, the effect of which were reversed by the ET(A) receptor antagonist BQ123 and the autophagy inducer rapamycin. Antagonism of ET(A), but not ET(B) receptor, rescued cardiac aging, which was negated by autophagy inhibition. Taken together, our data suggest that cardiac ET(A) receptor ablation protects against aging-associated myocardial remodeling and contractile dysfunction possibly through autophagy regulation.

          Related collections

          Author and article information

          Journal
          Basic Res. Cardiol.
          Basic research in cardiology
          1435-1803
          0300-8428
          Mar 2013
          : 108
          : 2
          Affiliations
          [1 ] Center for Cardiovascular Research and Alternative Medicine, University of Wyoming College of Health Sciences, Laramie, WY 82071, USA.
          Article
          NIHMS442425
          10.1007/s00395-013-0335-3
          3590116
          23381122
          c724d0d3-2464-4670-8ff2-eacdf11955ee
          History

          Comments

          Comment on this article