8
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      iTRAQ-Based Proteomic Analysis Reveals Protein Profile in Plasma from Children with Autism

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references67

          • Record: found
          • Abstract: found
          • Article: not found

          De novo gene disruptions in children on the autistic spectrum.

          Exome sequencing of 343 families, each with a single child on the autism spectrum and at least one unaffected sibling, reveal de novo small indels and point substitutions, which come mostly from the paternal line in an age-dependent manner. We do not see significantly greater numbers of de novo missense mutations in affected versus unaffected children, but gene-disrupting mutations (nonsense, splice site, and frame shifts) are twice as frequent, 59 to 28. Based on this differential and the number of recurrent and total targets of gene disruption found in our and similar studies, we estimate between 350 and 400 autism susceptibility genes. Many of the disrupted genes in these studies are associated with the fragile X protein, FMRP, reinforcing links between autism and synaptic plasticity. We find FMRP-associated genes are under greater purifying selection than the remainder of genes and suggest they are especially dosage-sensitive targets of cognitive disorders. Copyright © 2012 Elsevier Inc. All rights reserved.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Common genetic variants on 5p14.1 associate with autism spectrum disorders.

            Autism spectrum disorders (ASDs) represent a group of childhood neurodevelopmental and neuropsychiatric disorders characterized by deficits in verbal communication, impairment of social interaction, and restricted and repetitive patterns of interests and behaviour. To identify common genetic risk factors underlying ASDs, here we present the results of genome-wide association studies on a cohort of 780 families (3,101 subjects) with affected children, and a second cohort of 1,204 affected subjects and 6,491 control subjects, all of whom were of European ancestry. Six single nucleotide polymorphisms between cadherin 10 (CDH10) and cadherin 9 (CDH9)-two genes encoding neuronal cell-adhesion molecules-revealed strong association signals, with the most significant SNP being rs4307059 (P = 3.4 x 10(-8), odds ratio = 1.19). These signals were replicated in two independent cohorts, with combined P values ranging from 7.4 x 10(-8) to 2.1 x 10(-10). Our results implicate neuronal cell-adhesion molecules in the pathogenesis of ASDs, and represent, to our knowledge, the first demonstration of genome-wide significant association of common variants with susceptibility to ASDs.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Elevated immune response in the brain of autistic patients.

              This study determined immune activities in the brain of ASD patients and matched normal subjects by examining cytokines in the brain tissue. Our results showed that proinflammatory cytokines (TNF-alpha, IL-6 and GM-CSF), Th1 cytokine (IFN-gamma) and chemokine (IL-8) were significantly increased in the brains of ASD patients compared with the controls. However the Th2 cytokines (IL-4, IL-5 and IL-10) showed no significant difference. The Th1/Th2 ratio was also significantly increased in ASD patients. ASD patients displayed an increased innate and adaptive immune response through the Th1 pathway, suggesting that localized brain inflammation and autoimmune disorder may be involved in the pathogenesis of ASD.
                Bookmark

                Author and article information

                Journal
                PROTEOMICS - Clinical Applications
                Prot. Clin. Appl.
                Wiley
                18628346
                May 2018
                May 2018
                January 18 2018
                : 12
                : 3
                : 1700085
                Affiliations
                [1 ]College of Life Science and Oceanography; Shenzhen University; Shenzhen P. R. China
                [2 ]Maternal and Child Health Hospital of Baoan; Shenzhen P. R. China
                [3 ]Xiang Ya Changde Hospital; Changde City Hunan Province P. R. China
                [4 ]College of Life Science and Oceanography; Shenzhen Key Laboratory of Microbial Genetic Engineering; Shenzhen University; Shenzhen P. R. China
                Article
                10.1002/prca.201700085
                29274201
                c72fd080-dcac-4c89-a342-224bc6a85b9e
                © 2018

                http://doi.wiley.com/10.1002/tdm_license_1.1

                http://onlinelibrary.wiley.com/termsAndConditions#vor

                History

                Comments

                Comment on this article