33
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Speech target modulates speaking induced suppression in auditory cortex

      research-article
      1 , 1 , 2 ,
      BMC Neuroscience
      BioMed Central

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Previous magnetoencephalography (MEG) studies have demonstrated speaking-induced suppression (SIS) in the auditory cortex during vocalization tasks wherein the M100 response to a subject's own speaking is reduced compared to the response when they hear playback of their speech.

          Results

          The present MEG study investigated the effects of utterance rapidity and complexity on SIS: The greatest difference between speak and listen M100 amplitudes (i.e., most SIS) was found in the simple speech task. As the utterances became more rapid and complex, SIS was significantly reduced ( p = 0.0003).

          Conclusion

          These findings are highly consistent with our model of how auditory feedback is processed during speaking, where incoming feedback is compared with an efference-copy derived prediction of expected feedback. Thus, the results provide further insights about how speech motor output is controlled, as well as the computational role of auditory cortex in transforming auditory feedback.

          Related collections

          Most cited references19

          • Record: found
          • Abstract: found
          • Article: not found

          An internal model for sensorimotor integration.

          On the basis of computational studies it has been proposed that the central nervous system internally simulates the dynamic behavior of the motor system in planning, control, and learning; the existence and use of such an internal model is still under debate. A sensorimotor integration task was investigated in which participants estimated the location of one of their hands at the end of movements made in the dark and under externally imposed forces. The temporal propagation of errors in this task was analyzed within the theoretical framework of optimal state estimation. These results provide direct support for the existence of an internal model.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Modulation of the auditory cortex during speech: an MEG study.

            Several behavioral and brain imaging studies have demonstrated a significant interaction between speech perception and speech production. In this study, auditory cortical responses to speech were examined during self-production and feedback alteration. Magnetic field recordings were obtained from both hemispheres in subjects who spoke while hearing controlled acoustic versions of their speech feedback via earphones. These responses were compared to recordings made while subjects listened to a tape playback of their production. The amplitude of tape playback was adjusted to match the amplitude of self-produced speech. Recordings of evoked responses to both self-produced and tape-recorded speech were obtained free of movement-related artifacts. Responses to self-produced speech were weaker than were responses to tape-recorded speech. Responses to tones were also weaker during speech production, when compared with responses to tones recorded in the presence of speech from tape playback. However, responses evoked by gated noise stimuli did not differ for recordings made during self-produced speech versus recordings made during tape-recorded speech playback. These data suggest that during speech production, the auditory cortex (1) attenuates its sensitivity and (2) modulates its activity as a function of the expected acoustic feedback.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Stuttered and fluent speech production: an ALE meta-analysis of functional neuroimaging studies.

              This study reports an activation likelihood estimation (ALE) meta-analysis of imaging studies of chronic developmental stuttering in adults. Two parallel meta-analyses were carried out: (1) stuttered production in the stutterers; (2) fluent production in the control subjects. The control subjects' data replicated previous analyses of single-word reading, identifying activation in primary motor cortex, premotor cortex, supplementary motor area, Rolandic operculum, lateral cerebellum, and auditory areas, among others. The stuttering subjects' analysis showed that similar brain areas are involved in stuttered speech as in fluent speech, but with some important differences. Motor areas were over-activated in stuttering, including primary motor cortex, supplementary motor area, cingulate motor area, and cerebellar vermis. Frontal operculum, Rolandic operculum, and anterior insula showed anomalous right-laterality in stutterers. Auditory activations, due to hearing one's own speech, were essentially undetectable in stutterers. The phenomenon of efference copy is proposed as a unifying account of the pattern activation revealed within this ALE meta-analysis. This provides the basis for a stuttering system model that is testable and should help to advance the understanding and treatment of this disorder.
                Bookmark

                Author and article information

                Journal
                BMC Neurosci
                BMC Neuroscience
                BioMed Central
                1471-2202
                2009
                13 June 2009
                : 10
                : 58
                Affiliations
                [1 ]Department of Radiology, University of California, San Francisco, San Francisco, CA, USA
                [2 ]Department of Otolaryngology, University of California, San Francisco, San Francisco, CA, USA
                Article
                1471-2202-10-58
                10.1186/1471-2202-10-58
                2703647
                19523234
                c733de46-cc49-4be9-95aa-eb92eb88da9e
                Copyright © 2009 Ventura et al; licensee BioMed Central Ltd.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 12 January 2009
                : 13 June 2009
                Categories
                Research Article

                Neurosciences
                Neurosciences

                Comments

                Comment on this article