8
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      FRMPD1 activates the Hippo pathway via interaction with WWC3 to suppress the proliferation and invasiveness of lung cancer cells

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Purpose: The expression of FERM-domain-containing protein-1 (FRMPD1)/FERM and PDZ domain-containing protein-2 (FRMD2) in malignant tumors, including lung cancer, and its underlying molecular mechanism have not been reported yet.

          Materials and methods: Immunohistochemistry was performed to analyze the expression of FRMPD1 in lung cancer tissues, and statistical analysis was applied to analyze the relationship between FRMPD1 expression and clinicopathological factors. The biological effects of FRMPD1 on lung cancer cell proliferation and invasion were determined by functional experiments both in vivo and in vitro. Immunoblotting, RT-qPCR, dual-luciferase assay, and immunofluorescence were performed to demonstrate whether FRMPD1 stimulates Hippo signaling. Co-immunoprecipitation assays were used to clarify the underlying role of FRMPD1 in Hippo pathway activation via interaction with WW and C2 domain containing protein-3 (WWC3).

          Results: We found that FRMPD1 expression in lung cancer specimens was lower than that in normal bronchial epithelium and normal submucosal glands. FRMPD1 expression had a negative correlation with age, Tumor-Node-Metastasis (TNM) stage, lymph node metastasis, as well as poor prognosis. Moreover, ectopic expression of FRMPD1 significantly inhibited the proliferation and invasion of lung cancer cells, and inhibition of FRMPD1 expression led to opposite effects. Mechanistically, we found that FRMPD1 interacted with the C-terminal PDZ binding motif of WWC3 via its PSD95/DLG/ZO1 (PDZ) domain and promoted the phosphorylation of large tumor suppressor-1 (LATS1), thus inhibiting the nuclear translocation of yes-associated protein (YAP).

          Conclusion: FRMPD1 could activate the Hippo pathway and ultimately inhibit the malignant behavior of lung cancer cells through its interaction with WWC3. This work will provide an important experimental basis for the discovery of novel biomarkers of lung cancer and the development of targeted drugs.

          Related collections

          Most cited references22

          • Record: found
          • Abstract: found
          • Article: not found

          The Salvador-Warts-Hippo pathway - an emerging tumour-suppressor network.

          Intense research over the past four years has led to the discovery and characterization of a novel signalling network, known as the Salvador-Warts-Hippo (SWH) pathway, involved in tissue growth control in Drosophila melanogaster. At present, eleven proteins have been implicated as members of this pathway, and several downstream effector genes have been characterized. The importance of this pathway is emphasized by its evolutionary conservation, and by increasing evidence that its deregulation occurs in human tumours. Here, we review the main findings from Drosophila and the implications that these have for tumorigenesis in mammals.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            A molecular mechanism that links Hippo signalling to the inhibition of Wnt/β-catenin signalling.

            The Hippo signalling pathway has emerged as a key regulator of organ size, tissue homeostasis, and patterning. Recent studies have shown that two effectors in this pathway, YAP/TAZ, modulate Wnt/β-catenin signalling through their interaction with β-catenin or Dishevelled, depending on biological contexts. Here, we identify a novel mechanism through which Hippo signalling inhibits Wnt/β-catenin signalling. We show that YAP and TAZ, the transcriptional co-activators in the Hippo pathway, suppress Wnt signalling without suppressing the stability of β-catenin but through preventing its nuclear translocation. Our results show that YAP/TAZ binds to β-catenin, thereby suppressing Wnt-target gene expression, and that the Hippo pathway-stimulated phosphorylation of YAP, which induces cytoplasmic translocation of YAP, is required for the YAP-mediated inhibition of Wnt/β-catenin signalling. We also find that downregulation of Hippo signalling correlates with upregulation of β-catenin signalling in colorectal cancers. Remarkably, our analysis demonstrates that phosphorylated YAP suppresses nuclear translocation of β-catenin by directly binding to it in the cytoplasm. These results provide a novel mechanism, in which Hippo signalling antagonizes Wnt signalling by regulating nuclear translocation of β-catenin.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              ZEB1 turns into a transcriptional activator by interacting with YAP1 in aggressive cancer types

              Early dissemination, metastasis and therapy resistance are central hallmarks of aggressive cancer types and the leading cause of cancer-associated deaths. The EMT-inducing transcriptional repressor ZEB1 is a crucial stimulator of these processes, particularly by coupling the activation of cellular motility with stemness and survival properties. ZEB1 expression is associated with aggressive behaviour in many tumour types, but the potent effects cannot be solely explained by its proven function as a transcriptional repressor of epithelial genes. Here we describe a direct interaction of ZEB1 with the Hippo pathway effector YAP, but notably not with its paralogue TAZ. In consequence, ZEB1 switches its function to a transcriptional co-activator of a ‘common ZEB1/YAP target gene set', thereby linking two pathways with similar cancer promoting effects. This gene set is a predictor of poor survival, therapy resistance and increased metastatic risk in breast cancer, indicating the clinical relevance of our findings.
                Bookmark

                Author and article information

                Journal
                Cancer Manag Res
                Cancer Manag Res
                CMAR
                cancmanres
                Cancer Management and Research
                Dove
                1179-1322
                18 April 2019
                2019
                : 11
                : 3395-3410
                Affiliations
                [1 ]Department of Pathology, College of Basic Medical Sciences and First Affiliated Hospital, China Medical University , Shenyang, People’s Republic of China
                [2 ]Internal Medicine D, Department of Nephrology, Hypertension and Rheumatology, University Hospital Muenster , Muenster, Germany
                Author notes
                Correspondence: Enhua WangDepartment of Pathology, College of Basic Medical Sciences and the First Affiliated Hospital of China Medical University , No.77 Puhe Road, North New Area, Shenyang110122, People’s Republic of ChinaTel +861 338 688 7511Fax +860 242 326 1638Email wangeh@ 123456hotmail.com
                Article
                194512
                10.2147/CMAR.S194512
                6497479
                31114375
                c74aacff-e35b-4b7e-8501-dd11804a5bb9
                © 2019 Rong et al.

                This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at https://www.dovepress.com/terms.php and incorporate the Creative Commons Attribution – Non Commercial (unported, v3.0) License ( http://creativecommons.org/licenses/by-nc/3.0/). By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms ( https://www.dovepress.com/terms.php).

                History
                : 14 November 2018
                : 17 March 2019
                Page count
                Figures: 5, Tables: 2, References: 26, Pages: 16
                Categories
                Original Research

                Oncology & Radiotherapy
                frmpd1,hippo pathway,lats1,nsclc,wwc3
                Oncology & Radiotherapy
                frmpd1, hippo pathway, lats1, nsclc, wwc3

                Comments

                Comment on this article