63
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Dual-hemisphere tDCS facilitates greater improvements for healthy subjects' non-dominant hand compared to uni-hemisphere stimulation

      research-article
      1 , 2 , 1 , 3 , 1 ,
      BMC Neuroscience
      BioMed Central

      Read this article at

          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Transcranial direct current stimulation (tDCS) is a non-invasive technique that has been found to modulate the excitability of neurons in the brain. The polarity of the current applied to the scalp determines the effects of tDCS on the underlying tissue: anodal tDCS increases excitability, whereas cathodal tDCS decreases excitability. Research has shown that applying anodal tDCS to the non-dominant motor cortex can improve motor performance for the non-dominant hand, presumably by means of changes in synaptic plasticity between neurons. Our previous studies also suggest that applying cathodal tDCS over the dominant motor cortex can improve performance for the non-dominant hand; this effect may result from modulating inhibitory projections (interhemispheric inhibition) between the motor cortices of the two hemispheres. We hypothesized that stimultaneously applying cathodal tDCS over the dominant motor cortex and anodal tDCS over the non-dominant motor cortex would have a greater effect on finger sequence performance for the non-dominant hand, compared to stimulating only the non-dominant motor cortex. Sixteen right-handed participants underwent three stimulation conditions: 1) dual-hemisphere – with anodal tDCS over the non-dominant motor cortex, and cathodal tDCS over the dominant motor cortex, 2) uni-hemisphere – with anodal tDCS over the non-dominant motor cortex, and 3) sham tDCS. Participants performed a finger-sequencing task with the non-dominant hand before and after each stimulation. The dependent variable was the percentage of change in performance, comparing pre- and post-tDCS scores.

          Results

          A repeated measures ANOVA yielded a significant effect of tDCS condition ( F(2,30) = 4.468, p = .037). Post-hoc analyses revealed that dual-hemisphere stimulation improved performance significantly more than both uni-hemisphere ( p = .021) and sham stimulation ( p = .041).

          Conclusion

          We propose that simultaneously applying cathodal tDCS over the dominant motor cortex and anodal tDCS over the non-dominant motor cortex produced an additive effect, which facilitated motor performance in the non-dominant hand. These findings are relevant to motor skill learning and to research studies of motor recovery after stroke.

          Related collections

          Most cited references32

          • Record: found
          • Abstract: found
          • Article: not found

          Effects of non-invasive cortical stimulation on skilled motor function in chronic stroke.

          Stroke is a leading cause of adult motor disability. Despite recent progress, recovery of motor function after stroke is usually incomplete. This double blind, Sham-controlled, crossover study was designed to test the hypothesis that non-invasive stimulation of the motor cortex could improve motor function in the paretic hand of patients with chronic stroke. Hand function was measured using the Jebsen-Taylor Hand Function Test (JTT), a widely used, well validated test for functional motor assessment that reflects activities of daily living. JTT measured in the paretic hand improved significantly with non-invasive transcranial direct current stimulation (tDCS), but not with Sham, an effect that outlasted the stimulation period, was present in every single patient tested and that correlated with an increment in motor cortical excitability within the affected hemisphere, expressed as increased recruitment curves (RC) and reduced short-interval intracortical inhibition. These results document a beneficial effect of non-invasive cortical stimulation on a set of hand functions that mimic activities of daily living in the paretic hand of patients with chronic stroke, and suggest that this interventional strategy in combination with customary rehabilitative treatments may play an adjuvant role in neurorehabilitation.
            • Record: found
            • Abstract: found
            • Article: not found

            Cerebral location of international 10-20 system electrode placement.

            We employed CT scanning to correlate scalp markers placed according to the international 10-20 system with underlying cerebral structures. Subjects were 12 normal volunteers. Measurements included assessment for cranial asymmetry to determine the effect of skull asymmetry on cortical location of electrodes. Results were correlated with the cortical histological map of Brodmann. Primary cortical locations agree well with previously published data and provide cortical localization in greater detail than previous studies. Variability of cortical electrode location was substantial in some cases and not related to cranial asymmetry. The results indicate that CT scanning or other neuroimaging techniques which reveal detailed cerebral anatomy would be potentially highly useful in defining the generators of electrocerebral potentials recorded from the scalp.
              • Record: found
              • Abstract: found
              • Article: not found

              Three-dimensional probabilistic anatomical cranio-cerebral correlation via the international 10-20 system oriented for transcranial functional brain mapping.

              The recent advent of multichannel near-infrared spectroscopy (NIRS) has expanded its technical potential for human brain mapping. However, NIRS measurement has a technical drawback in that it measures cortical activities from the head surface without anatomical information of the object to be measured. This problem is also found in transcranial magnetic stimulation (TMS) that transcranially activates or inactivates the cortical surface. To overcome this drawback, we examined cranio-cerebral correlation using magnetic resonance imaging (MRI) via the guidance of the international 10-20 system for electrode placement, which had originally been developed for electroencephalography. We projected the 10-20 standard cranial positions over the cerebral cortical surface. After examining the cranio-cerebral correspondence for 17 healthy adults, we normalized the 10-20 cortical projection points of the subjects to the standard Montreal Neurological Institute (MNI) and Talairach stereotactic coordinates and obtained their probabilistic distributions. We also expressed the anatomical structures for the 10-20 cortical projection points probabilistically. Next, we examined the distance between the cortical surface and the head surface along the scalp and created a cortical surface depth map. We found that the locations of 10-20 cortical projection points in the standard MNI or Talairach space could be estimated with an average standard deviation of 8 mm. This study provided an initial step toward establishing a three-dimensional probabilistic anatomical platform that enables intra- and intermodal comparisons of NIRS and TMS brain imaging data.

                Author and article information

                Journal
                BMC Neurosci
                BMC Neuroscience
                BioMed Central
                1471-2202
                2008
                28 October 2008
                : 9
                : 103
                Affiliations
                [1 ]Department of Neurology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02215, USA
                [2 ]Institute of Mental Health, Department of Psychiatry, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada
                [3 ]Harvard Graduate School of Education, Cambridge, MA 02138, USA
                Article
                1471-2202-9-103
                10.1186/1471-2202-9-103
                2584652
                18957075
                c76f223d-8cec-4993-a34b-9936b7b2bb5f
                Copyright © 2008 Vines et al; licensee BioMed Central Ltd.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 27 May 2008
                : 28 October 2008
                Categories
                Research Article

                Neurosciences
                Neurosciences

                Comments

                Comment on this article

                Related Documents Log