38
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Variations in the Earth's Orbit: Pacemaker of the Ice Ages : For 500,000 years, major climatic changes have followed variations in obliquity and precession.

      1 , 2 , 3
      Science
      American Association for the Advancement of Science (AAAS)

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          1) Three indices of global climate have been monitored in the record of the past 450,000 years in Southern Hemisphere ocean-floor sediments. 2) Over the frequency range 10(-4) to 10(-5) cycle per year, climatic variance of these records is concentrated in three discrete spectral peaks at periods of 23,000, 42,000, and approximately 100,000 years. These peaks correspond to the dominant periods of the earth's solar orbit, and contain respectively about 10, 25, and 50 percent of the climatic variance. 3) The 42,000-year climatic component has the same period as variations in the obliquity of the earth's axis and retains a constant phase relationship with it. 4) The 23,000-year portion of the variance displays the same periods (about 23,000 and 19,000 years) as the quasi-periodic precession index. 5) The dominant, 100,000-year climatic [See table in the PDF file] component has an average period close to, and is in phase with, orbital eccentricity. Unlike the correlations between climate and the higher-frequency orbital variations (which can be explained on the assumption that the climate system responds linearly to orbital forcing), an explanation of the correlation between climate and eccentricity probably requires an assumption of nonlinearity. 6) It is concluded that changes in the earth's orbital geometry are the fundamental cause of the succession of Quaternary ice ages. 7) A model of future climate based on the observed orbital-climate relationships, but ignoring anthropogenic effects, predicts that the long-term trend over the next sevem thousand years is toward extensive Northern Hemisphere glaciation.

          Related collections

          Most cited references48

          • Record: found
          • Abstract: found
          • Article: not found

          The surface of the ice-age Earth.

          (1976)
          In the Northern Hemisphere the 18,000 B.P. world differed strikingly from the present in the huge land-based ice sheets, reaching approximately 3 km in thickness, and in a dramatic increase in the extent of pack ice and marine-based ice sheets. In the Southern Hemisphere the most striking contrast was the greater extent of sea ice. On land, grasslands, steppes, and deserts spread at the expense of forests. This change in vegetation, together with extensive areas of permanent ice and sandy outwash plains, caused an increase in global surface albedo over modern values. Sea level was lower by at least 85 m. The 18,000 B.P. oceans were characterized by: (i) marked steepening of thermal gradients along polar frontal systems, particularly in the North Atlantic and Antarctic; (ii) an equatorward displacement of polar frontal systems; (iii) general cooling of most surface waters, with a global average of -2.3 degrees C; (iv) increased cooling and up-welling along equatorial divergences in the Pacific and Atlantic; (v) low temperatures extending equatorward along the western coast of Africa, Australia, and South America, indicating increased upwelling and advection of cool waters; and (vi) nearly stable positions and temperatures of the central gyres in the subtropical Atlantic, Pacific, and Indian oceans.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Pleistocene Temperatures

              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Oxygen Isotope Analyses and Pleistocene Temperatures Re-assessed

                Bookmark

                Author and article information

                Journal
                Science
                Science
                American Association for the Advancement of Science (AAAS)
                0036-8075
                1095-9203
                December 10 1976
                December 10 1976
                : 194
                : 4270
                : 1121-1132
                Affiliations
                [1 ]Professor of geology at Columbia University, New York 10027, and is on the staff of the Lamont-Doherty Geological Observatory, Palisades, New York 10964
                [2 ]Professor of oceanography, Brown University, Providence, Rhode Island 02912
                [3 ]Staff of the Sub-department of Quaternary Research, Cambridge University, Cambridge, England
                Article
                10.1126/science.194.4270.1121
                17790893
                c7732001-7850-4a2d-9704-0a0be02f8971
                © 1976
                History

                Comments

                Comment on this article