8
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Analysis of hot region organization in hub proteins.

      Annals of Biomedical Engineering
      Amino Acid Sequence, Binding Sites, Computer Simulation, Models, Chemical, Models, Molecular, Molecular Sequence Data, Protein Binding, Protein Conformation, Protein Interaction Mapping, methods, Proteins, chemistry, ultrastructure

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Protein interaction maps constructed from binary interactions reveal that some proteins are highly connected to others (acting as hub proteins), whereas some others have a few interactions (at the edges of the map). This paper addresses hub proteins from a structural point: interfaces. It investigates how hot spots are organized in hub proteins (hot regions). We annotate interfaces as the ones between two date-hubs (DD), two party hubs (PP), and two non-hubs (NN). We investigate the physico-chemical properties of these three types of interfaces focusing on the accessible surface area distribution, hot region organization, and amino acid composition differences. Results reveal that there are significant differences between DD and PP interfaces. More of the hot spots are organized into the hot regions in DD interfaces compared to PP ones. A high fraction of the interfaces are covered by hot regions in DD interfaces. There are more distinct hot regions in DDs. Since the same (or overlapping) DD interfaces should be used repeatedly, different hot regions can be used to bind to different partners. Further, these hot region characteristics can be used to predict whether a given hub interface is involved in a DD or a PP interface type with 80% accuracy.

          Related collections

          Author and article information

          Comments

          Comment on this article