1
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Deletion of prolyl carboxypeptidase attenuates the metabolic effects of diet-induced obesity

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          α-Melanocyte-stimulating hormone (α-MSH) is a critical regulator of energy metabolism. Prolyl carboxypeptidase (PRCP) is an enzyme responsible for its degradation and inactivation. PRCP-null mice ( PRCP gt/gt) showed elevated levels of brain α-MSH, reduced food intake, and a leaner phenotype compared with wild-type controls. In addition, they were protected against diet-induced obesity. Here, we show that PRCP gt/gt animals have improved metabolic parameters compared with wild-type controls under a standard chow diet (SD) as well as on a high-fat diet (HFD). Similarly to when they are exposed to SD, PRCP gt/gt mice exposed to HFD for 13 wk showed a leaner phenotype due to decreased fat mass, increased energy expenditure, and locomotor activity. They also showed improved insulin sensitivity and glucose tolerance compared with WT controls and a significant reduction in fasting glucose levels. These improvements occured before changes in body weight and composition were evident, suggesting that the beneficial effect of PRCP ablation is independent of the adiposity levels. In support of a reduced gluconeogenesis, liver PEPCK and G-6-Pase mRNA levels were reduced significantly in PRCP gt/gt compared with WT mice. A significant decrease in liver weight and hepatic triglycerides were also observed in PRCP gt/gt compared with WT mice. Altogether, our data suggest that PRCP is an important regulator of energy and glucose homeostasis since its deletion significantly improves metabolic parameters in mice exposed to both SD and HFD.

          Related collections

          Most cited references22

          • Record: found
          • Abstract: found
          • Article: not found

          Obesity in the mouse model of pro-opiomelanocortin deficiency responds to peripheral melanocortin.

          Pro-opiomelanocortin (POMC)-derived peptides (the melanocortins adrenocorticotropin, alpha-, beta- and gamma-melanocyte stimulating hormone; and the endogenous opioid beta-endorphin) have a diverse array of biological activities, including roles in pigmentation, adrenocortical function and regulation of energy stores, and in the immune system and the central and peripheral nervous systems. We show here that mice lacking the POMC-derived peptides have obesity, defective adrenal development and altered pigmentation. This phenotype is similar to that of the recently identified human POMC-deficient patients. When treated with a stable alpha-melanocyte-stimulating hormone agonist, mutant mice lost more than 40% of their excess weight after 2 weeks. Our results identify the POMC-null mutant mouse as a model for studying the human POMC-null syndrome, and indicate the therapeutic use of peripheral melanocortin in the treatment of obesity.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The catabolic action of insulin in the brain is mediated by melanocortins.

            Like leptin, the pancreatic hormone insulin is an important adiposity signal to the brain. We report that the hypothalamic melanocortin system is an important target of the actions of insulin to regulate food intake and body weight. Hypothalamic neurons expressing insulin receptors were found to coexpress the melanocortin precursor molecule pro-opiomelanocortin (POMC), and administration of insulin into the third cerebral ventricle of fasted rats increased expression of POMC mRNA. Finally, a subthreshold dose of the melanocortin antagonist SHU-9119 prevented the reduction in food intake caused by third-ventricular insulin administration. These data suggest that the hypothalamic melanocortin system mediates the anorexic effects of central insulin, as well as of leptin.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Identification and characterization of prolylcarboxypeptidase as an endothelial cell prekallikrein activator.

              Our recent investigations have postulated a human umbilical vein endothelial cell (HUVEC)-associated prekallikrein activator (PKA). When prekallikrein (PK) assembles on high molecular weight kininogen on HUVEC, PK is activated to kallikrein. PKA was found in the 15,800 x g pellet of HUVEC lysates using an assay that measures PK activation only when bound to high molecular weight kininogen linked to microtiter plates. Sequential DEAE, wheat germ lectin affinity, and hydroxyapatite chromatography resulted in four protein bands on SDS-PAGE. One protein in the 73-kDa band was identified by amino acid sequencing as prolylcarboxypeptidase (PRCP). On gel filtration, PKA activity was a single homogenous peak identical in migration to the 73-kDa immunoblot of PRCP. Anti-PRCP inhibits PKA activity and PK activation on HUVEC. Purified PKA was blocked by diisopropyl fluorophosphate (1 mm), phenylmethylsulfonyl fluoride (3 mm), leupeptin (100 microm), antipain (IC(50) = 2 microm), HgCl(2) (IC(50) = 500 microm), Z-Pro-Pro-aldehyde-dimethyl acetate (IC(50) = 1 microm), and corn trypsin inhibitor (IC(50) = 40 nm). PKA did not correct the coagulant defect in factor XII deficient plasma, was purified from HUVEC cultured in factor XII-deficient serum, was not detected by antibody to factor XII, did not activate FXI, and was not inhibited by a neutralizing antibody to FXII. Angiotensin II (IC(50) = 2 microm) or bradykinin (IC(50) = 100 microm), but not angiotensin II-(1-7) or bradykinin(1-5), and the prolyl oligopeptidase inhibitor Fmoc-Ala-Pyr-CN (IC(50) = 50 nm) also blocked purified PKA activation of PK. The K(m) of PK activation by PRCP is 6.7 nm. PRCP antigen is present on the membrane of fixed but not permeabilized HUVEC. PRCP appears to be a HUVEC-associated PK activator.
                Bookmark

                Author and article information

                Journal
                American Journal of Physiology-Endocrinology and Metabolism
                American Journal of Physiology-Endocrinology and Metabolism
                American Physiological Society
                0193-1849
                1522-1555
                June 15 2012
                June 15 2012
                : 302
                : 12
                : E1502-E1510
                Affiliations
                [1 ]Program in Integrative Cell Signaling and Neurobiology of Metabolism, Yale University School of Medicine, New Haven, Connecticut;
                [2 ]Department of Ob/Gyn and Reproductive Sciences, Yale University School of Medicine, New Haven, Connecticut;
                [3 ]Department of Experimental Pharmacology, University of Naples “Federico II,” Naples, Italy;
                [4 ]Department of Neurobiology, Yale University School of Medicine, New Haven, Connecticut; and
                [5 ]Section of Comparative Medicine, Yale University School of Medicine, New Haven, Connecticut
                Article
                10.1152/ajpendo.00544.2011
                c77d009b-6061-42c6-8acb-f4ee73556271
                © 2012
                History

                Comments

                Comment on this article