76
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Aquaporins Are Critical for Provision of Water during Lactation and Intrauterine Progeny Hydration to Maintain Tsetse Fly Reproductive Success

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Tsetse flies undergo drastic fluctuations in their water content throughout their adult life history due to events such as blood feeding, dehydration and lactation, an essential feature of the viviparous reproductive biology of tsetse. Aquaporins (AQPs) are transmembrane proteins that allow water and other solutes to permeate through cellular membranes. Here we identify tsetse aquaporin (AQP) genes, examine their expression patterns under different physiological conditions (blood feeding, lactation and stress response) and perform functional analysis of three specific genes utilizing RNA interference (RNAi) gene silencing. Ten putative aquaporins were identified in the Glossina morsitans morsitans ( Gmm) genome, two more than has been previously documented in any other insect. All organs, tissues, and body parts examined had distinct AQP expression patterns. Two AQP genes, gmmdripa and gmmdripb ( =  gmmaqp1a and gmmaqp1b) are highly expressed in the milk gland/fat body tissues. The whole-body transcript levels of these two genes vary over the course of pregnancy. A set of three AQPs ( gmmaqp5, gmmaqp2a, and gmmaqp4b) are expressed highly in the Malpighian tubules. Knockdown of gmmdripa and gmmdripb reduced the efficiency of water loss following a blood meal, increased dehydration tolerance and reduced heat tolerance of adult females. Knockdown of gmmdripa extended pregnancy length, and gmmdripb knockdown resulted in extended pregnancy duration and reduced progeny production. We found that knockdown of AQPs increased tsetse milk osmolality and reduced the water content in developing larva. Combined knockdown of gmmdripa, gmmdripb and gmmaqp5 extended pregnancy by 4–6 d, reduced pupal production by nearly 50%, increased milk osmolality by 20–25% and led to dehydration of feeding larvae. Based on these results, we conclude that gmmDripA and gmmDripB are critical for diuresis, stress tolerance and intrauterine lactation through the regulation of water and/or other uncharged solutes.

          Author Summary

          Glossina sp. are responsible for transmission of African trypanosomes, the causative agents of sleeping sickness in humans and Nagana in cattle. Blood feeding and nutrient provisioning through lactation during intrauterine progeny development are periods when considerable water movement occurs within tsetse flies. With the completion of the tsetse fly genome, we sought to characterize the role of aquaporins in relation water homeostasis during blood feeding, stress tolerance and the lactation cycle. We provide evidence that specific AQPs are 1. critical during diuresis following a bloodmeal, 2. important in the regulation of dehydration resistance and heat tolerance and 3. crucial in the allocation of water within tsetse milk that is necessary for progeny hydration. Specifically, we discovered a novel tsetse AQP that is imperative to lactation and may represent a potential target for population control of this disease vector.

          Related collections

          Most cited references51

          • Record: found
          • Abstract: not found
          • Article: not found

          The aquaporin water channels.

          Peter Agre (2005)
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The structure of aquaporins.

            The ubiquitous members of the aquaporin (AQP) family form transmembrane pores that are either exclusive for water (aquaporins) or are also permeable for other small neutral solutes such as glycerol (aquaglyceroporins). The purpose of this review is to provide an overview of our current knowledge of AQP structures and to describe the structural features that define the function of these membrane pores. The review will discuss the mechanisms governing water conduction, proton exclusion and substrate specificity, and how the pore permeability is regulated in different members of the AQP family.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Phylogeny and evolution of the major intrinsic protein family.

              MIPs (major intrinsic proteins) form channels across biological membranes that control recruitment of water and small solutes such as glycerol and urea in all living organisms. Because of their widespread occurrence and large number, MIPs are a sound model system to understand evolutionary mechanisms underlying the generation of protein structural and functional diversity. With the recent increase in genomic projects, there is a considerable increase in the quantity and taxonomic range of MIPs in molecular databases. In the present study, I compiled more than 450 non-redundant amino acid sequences of MIPs from NCBI databases. Phylogenetic analyses using Bayesian inference reconstructed a statistically robust tree that allowed the classification of members of the family into two main evolutionary groups, the GLPs (glycerol-uptake facilitators or aquaglyceroporins) and the water transport channels or AQPs (aquaporins). Separate phylogenetic analyses of each of the MIP subfamilies were performed to determine the main groups of orthology. In addition, comparative sequence analyses were conducted to identify conserved signatures in the MIP molecule. The earliest and major gene duplication event in the history of the MIP family led to its main functional split into GLPs and AQPs. GLPs show typically one single copy in microbes (eubacteria, archaea and fungi), up to four paralogues in vertebrates and they are absent from plants. AQPs are usually single in microbes and show their greatest numbers and diversity in angiosperms and vertebrates. Functional recruitment of NOD26-like intrinsic proteins to glycerol transport due to the absence of GLPs in plants was highly supported. Acquisition of other MIP functions such as permeability to ammonia, arsenite or CO2 is restricted to particular MIP paralogues. Up to eight fairly conserved boxes were inferred in the primary sequence of the MIP molecule. All of them mapped on to one side of the channel except the conserved glycine residues from helices 2 and 5 that were found in the opposite side.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS Negl Trop Dis
                PLoS Negl Trop Dis
                plos
                plosntds
                PLoS Neglected Tropical Diseases
                Public Library of Science (San Francisco, USA )
                1935-2727
                1935-2735
                April 2014
                24 April 2014
                : 8
                : 4
                : e2517
                Affiliations
                [1 ]Department of Epidemiology of Microbial Diseases, Yale School of Public Health, Yale University, New Haven, Connecticut, United States of America
                [2 ]Department of Biology and Institute of Applied Biosciences, New Mexico State University, Las Cruces, New Mexico, United States of America
                [3 ]Institute of Zoology, Slovak Academy of Sciences, Bratislava, Slovakia
                [4 ]Department of Biochemistry and Molecular Biology, Egerton University, Njoro, Kenya
                [5 ]Molecular Biology and Bioinformatics Unit, International Center of Insect Physiology and Ecology (ICIPE), Nairobi, Kenya
                National Institute of Allergy and Infectious Diseases, United States of America
                Author notes

                The authors have declared that no competing interests exist.

                Performed the experiments: JBB VM POM LLD. Analyzed the data: JBB IAH GMA VM POM LLD JLB. Contributed reagents/materials/analysis tools: JBB IAH LLD DKM SA. Wrote the paper: JBB IAH GMA DKM SA.

                [¤]

                Current address: Department of Biological Sciences, McMicken College of Arts and Sciences, University of Cincinnati, Cincinnati, Ohio, United States of America.

                Article
                PNTD-D-13-00773
                10.1371/journal.pntd.0002517
                3998938
                24762803
                c7827c73-5e7d-4b7c-b5df-bd27070f0c0b
                Copyright @ 2014

                This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 30 May 2013
                : 20 September 2013
                Page count
                Pages: 12
                Funding
                Funding for this project was provided by National Institutes of Health AI081774 to SA, and National Institutes of Health Kirschstein Fellowship to JBB (F32AI093023). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
                Categories
                Research Article
                Biology and life sciences
                Cell Biology
                Molecular Cell Biology
                Genetics
                Epigenetics
                RNA interference
                Genomics
                Physiogenomics
                Gene Expression
                Parasitology
                Zoology
                Animal Physiology
                Entomology

                Infectious disease & Microbiology
                Infectious disease & Microbiology

                Comments

                Comment on this article