59
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Mapping of Quantitative Trait Locus (QTLs) that Contribute to Germination and Early Seedling Drought Tolerance in the Interspecific Cross Setaria italica× Setaria viridis

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Drought tolerance is an important breeding target for enhancing the yields of grain crop species in arid and semi-arid regions of the world. Two species of Setaria, domesticated foxtail millet ( S. italica) and its wild ancestor green foxtail ( S. viridis) are becoming widely adopted as models for functional genomics studies in the Panicoid grasses. In this study, the genomic regions controlling germination and early seedling drought tolerance in Setaria were identified using 190 F 7 lines derived from a cross between Yugu1, a S. italica cultivar developed in China, and a wild S. viridis genotype collected from Uzbekistan. Quantitative trait loci were identified which contribute to a number of traits including promptness index, radical root length, coleoptile length and lateral root number at germinating stage and seedling survival rate was characterized by the ability of desiccated seedlings to revive after rehydration. A genetic map with 128 SSR markers which spans 1293.9 cM with an average of 14 markers per linkage group of the 9 linkage groups was constructed. A total of eighteen QTLs were detected which included nine that explained over 10% of the phenotypic variance for a given trait. Both the wild green foxtail genotype and the foxtail millet cultivar contributed the favorite alleles for traits detected in this trial, indicating that wild Setaria viridis populations may serve as a reservoir for novel stress tolerance alleles which could be employed in foxtail millet breeding.

          Related collections

          Most cited references28

          • Record: found
          • Abstract: found
          • Article: not found

          The effect of drought and heat stress on reproductive processes in cereals.

          As the result of intensive research and breeding efforts over the last 20 years, the yield potential and yield quality of cereals have been greatly improved. Nowadays, yield safety has gained more importance because of the forecasted climatic changes. Drought and high temperature are especially considered as key stress factors with high potential impact on crop yield. Yield safety can only be improved if future breeding attempts will be based on the valuable new knowledge acquired on the processes determining plant development and its responses to stress. Plant stress responses are very complex. Interactions between plant structure, function and the environment need to be investigated at various phases of plant development at the organismal, cellular as well as molecular levels in order to obtain a full picture. The results achieved so far in this field indicate that various plant organs, in a definite hierarchy and in interaction with each other, are involved in determining crop yield under stress. Here we attempt to summarize the currently available information on cereal reproduction under drought and heat stress and to give an outlook towards potential strategies to improve yield safety in cereals.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Heat and drought adaptive QTL in a wheat population designed to minimize confounding agronomic effects

            A restricted range in height and phenology of the elite Seri/Babax recombinant inbred line (RIL) population makes it ideal for physiological and genetic studies. Previous research has shown differential expression for yield under water deficit associated with canopy temperature (CT). In the current study, 167 RILs plus parents were phenotyped under drought (DRT), hot irrigated (HOT), and temperate irrigated (IRR) environments to identify the genomic regions associated with stress-adaptive traits. In total, 104 QTL were identified across a combination of 115 traits × 3 environments × 2 years, of which 14, 16, and 10 QTL were associated exclusively with DRT, HOT, and IRR, respectively. Six genomic regions were related to a large number of traits, namely 1B-a, 2B-a, 3B-b, 4A-a, 4A-b, and 5A-a. A yield QTL located on 4A-a explained 27 and 17% of variation under drought and heat stress, respectively. At the same location, a QTL explained 28% of the variation in CT under heat, while 14% of CT variation under drought was explained by a QTL on 3B-b. The T1BL.1RS (rye) translocation donated by the Seri parent was associated with decreased yield in this population. There was no co-location of consistent yield and phenology or height-related QTL, highlighting the utility of using a population with a restricted range in anthesis to facilitate QTL studies. Common QTL for drought and heat stress traits were identified on 1B-a, 2B-a, 3B-b, 4A-a, 4B-b, and 7A-a confirming their generic value across stresses. Yield QTL were shown to be associated with components of other traits, supporting the prospects for dissecting crop performance into its physiological and genetic components in order to facilitate a more strategic approach to breeding. Electronic supplementary material The online version of this article (doi:10.1007/s00122-010-1351-4) contains supplementary material, which is available to authorized users.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Genetic and genomic tools to improve drought tolerance in wheat.

              Tolerance to drought is a quantitative trait, with a complex phenotype, often confounded by plant phenology. Breeding for drought tolerance is further complicated since several types of abiotic stress, such as high temperatures, high irradiance, and nutrient toxicities or deficiencies can challenge crop plants simultaneously. Although marker-assisted selection is now widely deployed in wheat, it has not contributed significantly to cultivar improvement for adaptation to low-yielding environments and breeding has relied largely on direct phenotypic selection for improved performance in these difficult environments. The limited success of the physiological and molecular breeding approaches now suggests that a careful rethink is needed of our strategies in order to understand better and breed for drought tolerance. A research programme for increasing drought tolerance of wheat should tackle the problem in a multi-disciplinary approach, considering interaction between multiple stresses and plant phenology, and integrating the physiological dissection of drought-tolerance traits and the genetic and genomics tools, such as quantitative trait loci (QTL), microarrays, and transgenic crops. In this paper, recent advances in the genetics and genomics of drought tolerance in wheat and barley are reviewed and used as a base for revisiting approaches to analyse drought tolerance in wheat. A strategy is then described where a specific environment is targeted and appropriate germplasm adapted to the chosen environment is selected, based on extensive definition of the morpho-physiological and molecular mechanisms of tolerance of the parents. This information was used to create structured populations and develop models for QTL analysis and positional cloning.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS One
                PLoS ONE
                plos
                plosone
                PLoS ONE
                Public Library of Science (San Francisco, USA )
                1932-6203
                2014
                17 July 2014
                : 9
                : 7
                : e101868
                Affiliations
                [1 ]Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
                [2 ]Institute of Millet Crops, Hebei Academy of Agricultural and Forestry Sciences, Shijiazhuang, China
                [3 ]Institute of Dry Land Agriculture, Hebei Academy of Agricultural and Forestry Sciences, Hengshui, China
                [4 ]College of Life Sciences, Hebei Normal University, Shijiazhuang, China
                CIRAD, France
                Author notes

                Competing Interests: The authors have declared that no competing interests exist.

                Conceived and designed the experiments: XD HZ. Performed the experiments: LQ WZ ML YC BL. Analyzed the data: GJ JS LQ ZS XD. Contributed reagents/materials/analysis tools: HZ XD WL GJ. Contributed to the writing of the manuscript: GJ JS XD.

                Article
                PONE-D-14-15289
                10.1371/journal.pone.0101868
                4102488
                25033201
                c792cab0-d096-4dd2-87b3-d35a82a45c9a
                Copyright @ 2014

                This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 5 April 2014
                : 12 June 2014
                Page count
                Pages: 8
                Funding
                This work was supported by Beijing Natural Science Foundation (6142019), Fundamental Research Funds of ICS-CAAS (Grant to Guanqing Jia, 2013007), Science and Technology Innovation Project of CAAS, National High Technology Research and Development Program of China (863 Program) (2013AA102603), the National Natural Science Foundation of China (31171560, 31301328, 31200910), and China Agricultural Research System (CARS07-12.5-A02). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
                Categories
                Research Article
                Biology and Life Sciences
                Agriculture
                Crops
                Cereal Crops
                Millet
                Agricultural Biotechnology
                Custom metadata
                The authors confirm that all data underlying the findings are fully available without restriction. All relevant data are within the paper and its Supporting Information files.

                Uncategorized
                Uncategorized

                Comments

                Comment on this article