91
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Effects of Low-Volume High-Intensity Interval Training (HIT) on Fitness in Adults: A Meta-Analysis of Controlled and Non-Controlled Trials

      review-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Low-volume high-intensity interval training (HIT) appears to be an efficient and practical way to develop physical fitness.

          Objective

          Our objective was to estimate meta-analysed mean effects of HIT on aerobic power (maximum oxygen consumption [ VO 2max] in an incremental test) and sprint fitness (peak and mean power in a 30-s Wingate test).

          Data Sources

          Five databases (PubMed, MEDLINE, Scopus, BIOSIS and Web of Science) were searched for original research articles published up to January 2014. Search terms included ‘high intensity’, ‘HIT’, ‘sprint’, ‘fitness’ and ‘ VO 2max’.

          Study Selection

          Inclusion criteria were fitness assessed pre- and post-training; training period ≥2 weeks; repetition duration 30–60 s; work/rest ratio <1.0; exercise intensity described as maximal or near maximal; adult subjects aged >18 years.

          Data Extraction

          The final data set consisted of 55 estimates from 32 trials for VO 2max, 23 estimates from 16 trials for peak sprint power, and 19 estimates from 12 trials for mean sprint power. Effects on fitness were analysed as percentages via log transformation. Standard errors calculated from exact p values (where reported) or imputed from errors of measurement provided appropriate weightings. Fixed effects in the meta-regression model included type of study (controlled, uncontrolled), subject characteristics (sex, training status, baseline fitness) and training parameters (number of training sessions, repetition duration, work/rest ratio). Probabilistic magnitude-based inferences for meta-analysed effects were based on standardized thresholds for small, moderate and large changes (0.2, 0.6 and 1.2, respectively) derived from between-subject standard deviations (SDs) for baseline fitness.

          Results

          A mean low-volume HIT protocol (13 training sessions, 0.16 work/rest ratio) in a controlled trial produced a likely moderate improvement in the VO 2max of active non-athletic males (6.2 %; 90 % confidence limits ±3.1 %), when compared with control. There were possibly moderate improvements in the VO 2max of sedentary males (10.0 %; ±5.1 %) and active non-athletic females (3.6 %; ±4.3 %) and a likely small increase for sedentary females (7.3 %; ±4.8 %). The effect on the VO 2max of athletic males was unclear (2.7 %; ±4.6 %). A possibly moderate additional increase was likely for subjects with a 10 mL·kg −1·min −1 lower baseline VO 2max (3.8 %; ±2.5 %), whereas the modifying effects of sex and difference in exercise dose were unclear. The comparison of HIT with traditional endurance training was unclear (−1.6 %; ±4.3 %). Unexplained variation between studies was 2.0 % (SD). Meta-analysed effects of HIT on Wingate peak and mean power were unclear.

          Conclusions

          Low-volume HIT produces moderate improvements in the aerobic power of active non-athletic and sedentary subjects. More studies are needed to resolve the unclear modifying effects of sex and HIT dose on aerobic power and the unclear effects on sprint fitness.

          Related collections

          Most cited references62

          • Record: found
          • Abstract: found
          • Article: not found

          High-intensity interval training in patients with lifestyle-induced cardiometabolic disease: a systematic review and meta-analysis.

          Cardiorespiratory fitness (CRF) is a strong determinant of morbidity and mortality. In athletes and the general population, it is established that high-intensity interval training (HIIT) is superior to moderate-intensity continuous training (MICT) in improving CRF. This is a systematic review and meta-analysis to quantify the efficacy and safety of HIIT compared to MICT in individuals with chronic cardiometabolic lifestyle diseases. The included studies were required to have a population sample of chronic disease, where poor lifestyle is considered as a main contributor to the disease. The procedural quality of the studies was assessed by use of a modified Physiotherapy Evidence Base Database (PEDro) scale. A meta-analysis compared the mean difference (MD) of preintervention versus postintervention CRF (VO2peak) between HIIT and MICT. 10 studies with 273 patients were included in the meta-analysis. Participants had coronary artery disease, heart failure, hypertension, metabolic syndrome and obesity. There was a significantly higher increase in the VO2peak after HIIT compared to MICT (MD 3.03 mL/kg/min, 95% CI 2.00 to 4.07), equivalent to 9.1%. HIIT significantly increases CRF by almost double that of MICT in patients with lifestyle-induced chronic diseases. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            High-intensity interval training, solutions to the programming puzzle: Part I: cardiopulmonary emphasis.

            High-intensity interval training (HIT), in a variety of forms, is today one of the most effective means of improving cardiorespiratory and metabolic function and, in turn, the physical performance of athletes. HIT involves repeated short-to-long bouts of rather high-intensity exercise interspersed with recovery periods. For team and racquet sport players, the inclusion of sprints and all-out efforts into HIT programmes has also been shown to be an effective practice. It is believed that an optimal stimulus to elicit both maximal cardiovascular and peripheral adaptations is one where athletes spend at least several minutes per session in their 'red zone,' which generally means reaching at least 90% of their maximal oxygen uptake (VO2max). While use of HIT is not the only approach to improve physiological parameters and performance, there has been a growth in interest by the sport science community for characterizing training protocols that allow athletes to maintain long periods of time above 90% of VO2max (T@VO2max). In addition to T@VO2max, other physiological variables should also be considered to fully characterize the training stimulus when programming HIT, including cardiovascular work, anaerobic glycolytic energy contribution and acute neuromuscular load and musculoskeletal strain. Prescription for HIT consists of the manipulation of up to nine variables, which include the work interval intensity and duration, relief interval intensity and duration, exercise modality, number of repetitions, number of series, as well as the between-series recovery duration and intensity. The manipulation of any of these variables can affect the acute physiological responses to HIT. This article is Part I of a subsequent II-part review and will discuss the different aspects of HIT programming, from work/relief interval manipulation to the selection of exercise mode, using different examples of training cycles from different sports, with continued reference to T@VO2max and cardiovascular responses. Additional programming and periodization considerations will also be discussed with respect to other variables such as anaerobic glycolytic system contribution (as inferred from blood lactate accumulation), neuromuscular load and musculoskeletal strain (Part II).
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Aerobic high-intensity intervals improve VO2max more than moderate training.

              The present study compared the effects of aerobic endurance training at different intensities and with different methods matched for total work and frequency. Responses in maximal oxygen uptake (VO2max), stroke volume of the heart (SV), blood volume, lactate threshold (LT), and running economy (CR) were examined. Forty healthy, nonsmoking, moderately trained male subjects were randomly assigned to one of four groups:1) long slow distance (70% maximal heart rate; HRmax); 2)lactate threshold (85% HRmax); 3) 15/15 interval running (15 s of running at 90-95% HRmax followed by 15 s of active resting at 70% HRmax); and 4) 4 x 4 min of interval running (4 min of running at 90-95% HRmax followed by 3 min of active resting at 70%HRmax). All four training protocols resulted in similar total oxygen consumption and were performed 3 d.wk for 8 wk. High-intensity aerobic interval training resulted in significantly increased VO2max compared with long slow distance and lactate-threshold training intensities (P<0.01). The percentage increases for the 15/15 and 4 x 4 min groups were 5.5 and 7.2%, respectively, reflecting increases in V O2max from 60.5 to 64.4 mL x kg(-1) x min(-1) and 55.5 to 60.4 mL x kg(-1) x min(-1). SV increased significantly by approximately 10% after interval training (P<0.05). : High-aerobic intensity endurance interval training is significantly more effective than performing the same total work at either lactate threshold or at 70% HRmax, in improving VO2max. The changes in VO2max correspond with changes in SV, indicating a close link between the two.
                Bookmark

                Author and article information

                Contributors
                +44-1642-342380 , +44-1642-342317 , m.weston@tees.ac.uk
                Journal
                Sports Med
                Sports Med
                Sports Medicine (Auckland, N.z.)
                Springer International Publishing (Cham )
                0112-1642
                1179-2035
                18 April 2014
                18 April 2014
                2014
                : 44
                : 1005-1017
                Affiliations
                [ ]Department of Sport and Exercise Sciences, School of Social Sciences and Law, Teesside University, Middlesbrough, UK
                [ ]School of Health and Social Care, Teesside University, Middlesbrough, UK
                [ ]Sports Performance Research Institute New Zealand, AUT University, Auckland, New Zealand
                Article
                180
                10.1007/s40279-014-0180-z
                4072920
                24743927
                c7977f0c-84e0-49db-996d-c2eec69fdb86
                © Springer International Publishing Switzerland 2014
                History
                Categories
                Systematic Review
                Custom metadata
                © Springer International Publishing Switzerland 2014

                Comments

                Comment on this article

                scite_

                Similar content93

                Cited by143

                Most referenced authors611