15
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Heritability of the Human Craniofacial Complex : Heritability of Human Craniofacial Complex

      1 , 2 , 2 , 3 , 2 , 4
      The Anatomical Record
      Wiley

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          <p class="first" id="P1">Quantifying normal variation and the genetic underpinnings of anatomical structures is one of the main goals of modern morphological studies. However, the extent of genetic contributions to normal variation in craniofacial morphology in humans is still unclear. The current study addresses this gap by investigating the genetic underpinnings of normal craniofacial morphology The sample under investigation consists of 75 linear and angular measurements spanning the entire craniofacial complex, recorded from lateral cephalographs of 1,379 participants in the Fels Longitudinal Study. Heritabilities for each trait were estimated using SOLAR, a maximum-likelihood variance components approach utilizing all pedigree information for parameter estimation. Trait means and mean effects of the covariates age, sex, age <sup>2</sup>, sex × age, and sex × age <sup>2</sup> were simultaneously estimated in the analytic models. All traits of the craniofacial complex were significantly heritable. Heritability estimates ranged from 0.10 to 0.60, with the majority being moderate. It is important to note that we found similar ranges of heritability occurring across the different functional/developmental components of the craniofacial complex, the splanchnocranium, the basicranium, and the neurocranium. This suggests that traits from different regions of the craniofacial complex are of comparable utility for the purposes of population history and phylogeny reconstruction. At the same time, this genetic influence on craniofacial morphology signals a caution to researchers of nongenetic studies to consider the implications of this finding when selecting samples for study given their project design and goals. </p>

          Related collections

          Most cited references57

          • Record: found
          • Abstract: not found
          • Article: not found

          Phenotypic, Genetic, and Environmental Morphological Integration in the Cranium

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Human cranial anatomy and the differential preservation of population history and climate signatures.

            Cranial morphology is widely used to reconstruct evolutionary relationships, but its reliability in reflecting phylogeny and population history has been questioned. Some cranial regions, particularly the face and neurocranium, are believed to be influenced by the environment and prone to convergence. Others, such as the temporal bone, are thought to reflect more accurately phylogenetic relationships. Direct testing of these hypotheses was not possible until the advent of large genetic data sets. The few relevant studies in human populations have had intriguing but possibly conflicting results, probably partly due to methodological differences and to the small numbers of populations used. Here we use three-dimensional (3D) geometric morphometrics methods to test explicitly the ability of cranial shape, size, and relative position/orientation of cranial regions to track population history and climate. Morphological distances among 13 recent human populations were calculated from four 3D landmark data sets, respectively reflecting facial, neurocranial, and temporal bone shape; shape and relative position; overall cranial shape; and centroid sizes. These distances were compared to neutral genetic and climatic distances among the same, or closely matched, populations. Results indicate that neurocranial and temporal bone shape track neutral genetic distances, while facial shape reflects climate; centroid size shows a weak association with climatic variables; and relative position/orientation of cranial regions does not appear correlated with any of these factors. Because different cranial regions preserve population history and climate signatures differentially, caution is suggested when using cranial anatomy for phylogenetic reconstruction. Copyright (c) 2006 Wiley-Liss, Inc.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Inferring hominoid and early hominid phylogeny using craniodental characters: the role of fossil taxa.

              Recent discoveries of new fossil hominid species have been accompanied by several phylogenetic hypotheses. All of these hypotheses are based on a consideration of hominid craniodental morphology. However, Collard and Wood (2000) suggested that cladograms derived from craniodental data are inconsistent with the prevailing hypothesis of ape phylogeny based on molecular data. The implication of their study is that craniodental characters are unreliable indicators of phylogeny in hominoids and fossil hominids but, notably, their analysis did not include extinct species. We report here on a cladistic analysis designed to test whether the inclusion of fossil taxa affects the ability of morphological characters to recover the molecular ape phylogeny. In the process of doing so, the study tests both Collard and Wood's (2000) hypothesis of character reliability, and the several recently proposed hypotheses of early hominid phylogeny. One hundred and ninety-eight craniodental characters were examined, including 109 traits that traditionally have been of interest in prior studies of hominoid and early hominid phylogeny, and 89 craniometric traits that represent size-corrected linear dimensions measured between standard cranial landmarks. The characters were partitioned into two data sets. One set contained all of the characters, and the other omitted the craniometric characters. Six parsimony analyses were performed; each data set was analyzed three times, once using an ingroup that consisted only of extant hominoids, a second time using an ingroup of extant hominoids and extinct early hominids, and a third time excluding Kenyanthropus platyops. Results suggest that the inclusion of fossil taxa can play a significant role in phylogenetic analysis. Analyses that examined only extant taxa produced most parsimonious cladograms that were inconsistent with the ape molecular tree. In contrast, analyses that included fossil hominids were consistent with that tree. This consistency refutes the basis for the hypothesis that craniodental characters are unreliable for reconstructing phylogenetic relationships. Regarding early hominids, the relationships of Sahelanthropus tchadensis and Ardipithecus ramidus were relatively unstable. However, there is tentative support for the hypotheses that S. tchadensis is the sister taxon of all other hominids. There is support for the hypothesis that A. anamensis is the sister taxon of all hominids except S. tchadensis and Ar. ramidus. There is no compelling support for the hypothesis that Kenyanthropus platyops shares especially close affinities with Homo rudolfensis. Rather, K. platyops is nested within the Homo + Paranthropus + Australopithecus africanus clade. If K. platyops is a valid species, these relationships suggest that Homo and Paranthropus are likely to have diverged from other hominids much earlier than previously supposed. There is no support for the hypothesis that A. garhi is either the sister taxon or direct ancestor of the genus Homo. Phylogenetic relationships indicate that Australopithecus is paraphyletic. Thus, A. anamensis and A. garhi should be allocated to new genera.
                Bookmark

                Author and article information

                Journal
                The Anatomical Record
                Anat. Rec.
                Wiley
                19328486
                September 2015
                September 2015
                July 16 2015
                : 298
                : 9
                : 1535-1547
                Affiliations
                [1 ]Department of Anthropology; Bryn Mawr College; Bryn Mawr Pennsylvania
                [2 ]Department of Community Health; Division of Morphological Sciences and Biostatistics; Lifespan Health Research Center; Boonshoft School of Medicine, Wright State University; Dayton Ohio
                [3 ]Department of Orthopaedic Surgery; Boonshoft School of Medicine, Wright State University; Dayton Ohio
                [4 ]Department of Orthodontics; School of Dental Medicine, Case Western Reserve University; Cleveland Ohio
                Article
                10.1002/ar.23186
                6407862
                26097051
                c7a3f0ae-4581-4962-b44b-6678bc6ff38c
                © 2015

                http://doi.wiley.com/10.1002/tdm_license_1.1

                History

                Comments

                Comment on this article