22
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Myelin oligodendrocyte glycoprotein antibody-associated disease: an immunopathological study

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Conformation-sensitive antibodies against myelin oligodendrocyte glycoprotein (MOG) are detectable in patients with optic neuritis, myelitis, opticomyelitis, acute or multiphasic disseminated encephalomyelitis (ADEM/MDEM) and brainstem/cerebral cortical encephalitis, but are rarely detected in patients with prototypic multiple sclerosis. So far, there has been no systematic study on the pathological relationship between demyelinating lesions and cellular/humoral immunity in MOG antibody-associated disease. Furthermore, it is unclear whether the pathomechanisms of MOG antibody-mediated demyelination are similar to the demyelination patterns of multiple sclerosis, neuromyelitis optica spectrum disorders (NMOSD) with AQP4 antibody, or ADEM. In this study, we immunohistochemically analysed biopsied brain tissues from 11 patients with MOG antibody-associated disease and other inflammatory demyelinating diseases. Patient median onset age was 29 years (range 9–64), and the median interval from attack to biopsy was 1 month (range 0.5–96). The clinical diagnoses were ADEM (n = 2), MDEM (n = 1), multiple brain lesions without encephalopathy (n = 3), leukoencephalopathy (n = 3) and cortical encephalitis (n = 2). All these cases had multiple/extensive lesions on MRI and were oligoclonal IgG band-negative. Most demyelinating lesions in 10 of 11 cases showed a perivenous demyelinating pattern previously reported in ADEM (153/167 lesions) and a fusion pattern (11/167 lesions) mainly in the cortico-medullary junctions and white matter, and only three lesions in two cases showed confluent demyelinated plaques. In addition, 60 of 167 demyelinating lesions (mainly in the early phase) showed MOG-dominant myelin loss, but relatively preserved oligodendrocytes, which were distinct from those of AQP4 antibody-positive NMOSD exhibiting myelin-associated glycoprotein-dominant oligodendrogliopathy. In MOG antibody-associated diseases, MOG-laden macrophages were found in the perivascular spaces and demyelinating lesions, and infiltrated cells were abundant surrounding multiple blood vessels in and around the demyelinating lesions, mainly consisting of macrophages (CD68; 1814 ± 1188 cells/mm2), B cells (CD20; 468 ± 817 cells/mm2), and T cells (CD3; 2286 ± 1951 cells/mm2), with CD4-dominance (CD4+ versus CD8+; 1281 ± 1196 cells/mm2 versus 851 ± 762 cells/mm2, P < 0.01). Humoral immunity, evidenced by perivascular deposits of activated complements and immunoglobulins, was occasionally observed in some MOG antibody-associated demyelinating lesions, and the frequency was much lower than that in AQP4 antibody-positive NMOSD. Subpial lesions with perivenous demyelination were observed in both ADEM and cortical encephalitis. Our study suggests that ADEM-like perivenous inflammatory demyelination with MOG-dominant myelin loss is a characteristic finding of MOG antibody-associated disease regardless of whether the diagnostic criteria of ADEM are met. These pathological features are clearly different from those of multiple sclerosis and AQP4 antibody-positive NMOSD, suggesting an independent autoimmune demyelinating disease entity.

          Related collections

          Most cited references31

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          The compartmentalized inflammatory response in the multiple sclerosis brain is composed of tissue-resident CD8+ T lymphocytes and B cells

          The nature of the inflammatory response in the MS brain is poorly defined. Machado-Santos et al. report that chronic inflammation is dominated by tissue resident CD8+ T-cells and CD20+ B-cells, which are activated in lesions with demyelinating or neurodegenerative activity.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            MOG antibody–positive, benign, unilateral, cerebral cortical encephalitis with epilepsy

            Objective: To describe the features of adult patients with benign, unilateral cerebral cortical encephalitis positive for the myelin oligodendrocyte glycoprotein (MOG) antibody. Methods: In this retrospective, cross-sectional study, after we encountered an index case of MOG antibody–positive unilateral cortical encephalitis with epileptic seizure, we tested for MOG antibody using our in-house, cell-based assay in a cohort of 24 consecutive adult patients with steroid-responsive encephalitis of unknown etiology seen at Tohoku University Hospital (2008–2014). We then analyzed the findings in MOG antibody–positive cases. Results: Three more patients, as well as the index case, were MOG antibody–positive, and all were adult men (median age 37 years, range 23–39 years). The main symptom was generalized epileptic seizure with or without abnormal behavior or consciousness disturbance. Two patients also developed unilateral benign optic neuritis (before or after seizure). In all patients, brain MRI demonstrated unilateral cerebral cortical fluid-attenuated inversion recovery hyperintense lesions, which were swollen and corresponded to hyperperfusion on SPECT. CSF studies showed moderate mononuclear pleocytosis with some polymorphonuclear cells and mildly elevated total protein levels, but myelin basic protein was not elevated. A screening of encephalitis-associated autoantibodies, including aquaporin-4, glutamate receptor, and voltage-gated potassium channel antibodies, was negative. All patients received antiepilepsy drugs and fully recovered after high-dose methylprednisolone, and the unilateral cortical MRI lesions subsequently disappeared. No patient experienced relapse. Conclusions: These MOG antibody–positive cases represent unique benign unilateral cortical encephalitis with epileptic seizure. The pathology may be autoimmune, although the findings differ from MOG antibody–associated demyelination and Rasmussen and other known immune-mediated encephalitides.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              MOG cell-based assay detects non-MS patients with inflammatory neurologic disease

              Objective: To optimize sensitivity and disease specificity of a myelin oligodendrocyte glycoprotein (MOG) antibody assay. Methods: Consecutive sera (n = 1,109) sent for aquaporin-4 (AQP4) antibody testing were screened for MOG antibodies (Abs) by cell-based assays using either full-length human MOG (FL-MOG) or the short-length form (SL-MOG). The Abs were initially detected by Alexa Fluor goat anti-human IgG (H + L) and subsequently by Alexa Fluor mouse antibodies to human IgG1. Results: When tested at 1:20 dilution, 40/1,109 sera were positive for AQP4-Abs, 21 for SL-MOG, and 180 for FL-MOG. Only one of the 40 AQP4-Ab–positive sera was positive for SL-MOG-Abs, but 10 (25%) were positive for FL-MOG-Abs (p = 0.0069). Of equal concern, 48% (42/88) of sera from controls (patients with epilepsy) were positive by FL-MOG assay. However, using an IgG1-specific secondary antibody, only 65/1,109 (5.8%) sera were positive on FL-MOG, and AQP4-Ab– positive and control sera were negative. IgM reactivity accounted for the remaining anti-human IgG (H + L) positivity toward FL-MOG. The clinical diagnoses were obtained in 33 FL-MOG–positive patients, blinded to the antibody data. IgG1-Abs to FL-MOG were associated with optic neuritis (n = 11), AQP4-seronegative neuromyelitis optica spectrum disorder (n = 4), and acute disseminated encephalomyelitis (n = 1). All 7 patients with probable multiple sclerosis (MS) were MOG-IgG1 negative. Conclusions: The limited disease specificity of FL-MOG-Abs identified using Alexa Fluor goat anti-human IgG (H + L) is due in part to detection of IgM-Abs. Use of the FL-MOG and restricting to IgG1-Abs substantially improves specificity for non-MS demyelinating diseases. Classification of evidence: This study provides Class II evidence that the presence of serum IgG1- MOG-Abs in AQP4-Ab–negative patients distinguishes non-MS CNS demyelinating disorders from MS (sensitivity 24%, 95% confidence interval [CI] 9%–45%; specificity 100%, 95% CI 88%–100%).
                Bookmark

                Author and article information

                Journal
                Brain
                Oxford University Press (OUP)
                0006-8950
                1460-2156
                May 15 2020
                May 15 2020
                Affiliations
                [1 ]Department of Neurology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
                [2 ]Department of Multiple Sclerosis Therapeutics, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
                [3 ]Department of Neurology, National Hospital Organization Miyagi National Hospital, Watari, Miyagi, Japan
                [4 ]Division of Neurology, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan
                [5 ]Department of Neurology, Japanese Red Cross Ishinomaki Hospital, Ishinomaki, Miyagi, Japan
                [6 ]Department of Pediatrics, Japanese Red Cross Akita Hospital, Akita, Akita, Japan
                [7 ]Department of Neuropediatrics, Tokyo Metropolitan Neurological Hospital, Fuchu, Tokyo, Japan
                [8 ]Department of Laboratory Medicine and Pathology, Tokyo Metropolitan Neurological Hospital, Fuchu, Tokyo, Japan
                [9 ]Department of Neurology, Keio University School of Medicine, Shinjuku-ku, Tokyo, Japan
                [10 ]Department of Neurology, the Jikei University School of Medicine, Minato-ku, Tokyo, Japan
                [11 ]Department of Neurology, Division of Clinical Medicine, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
                [12 ]Department of Neuropathology, Institute for Medical Science of Aging, Aichi Medical University, Nagakute, Aichi, Japan
                [13 ]Department of Neurology, National Hospital Organization Yonezawa National Hospital, Yonezawa, Yamagata, Japan
                [14 ]Department of Neurology, Tohoku Medical and Pharmaceutical University, Sendai, Miyagi, Japan
                [15 ]Department of Pathology, National Hospital Organization Sendai Medical Center, Sendai, Miyagi, Japan
                [16 ]Department of Neuroimmunology, Center for Brain Research, Medical University of Vienna, Vienna, Austria
                [17 ]Department of Multiple Sclerosis Therapeutics, Fukushima Medical University, Fukushima, Fukushima, Japan
                Article
                10.1093/brain/awaa102
                32412053
                c7a64390-8742-44c0-9c11-1bc86ada23d7
                © 2020

                https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model

                History

                Comments

                Comment on this article