54
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Structural brain changes related to bilingualism: does immersion make a difference?

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Within the field of neuroscientific research on second language learning, considerable attention has been devoted to functional and recently also structural changes related to second language acquisition. The present literature review summarizes studies that investigated structural changes related to bilingualism. Furthermore, as recent evidence has suggested that native-like exposure to a second language (i.e., a naturalistic learning setting or immersion) considerably impacts second language learning, all findings are reflected with respect to the learning environment. Aggregating the existing evidence, we conclude that structural changes in left inferior frontal and inferior parietal regions have been observed in studies on cortical gray matter changes, while the anterior parts of the corpus callosum have been repeatedly found to reflect bilingualism in studies on white matter (WM) connectivity. Regarding the learning environment, no cortical alterations can be attributed specifically to naturalistic or classroom learning. With regard to WM changes, one might tentatively propose that changes in IFOF and SLF are possibly more prominently observed in studies investigating bilinguals with a naturalistic learning experience. However, future studies are needed to replicate and strengthen the existing evidence and to directly test the impact of naturalistic exposure on structural brain plasticity.

          Related collections

          Most cited references31

          • Record: found
          • Abstract: found
          • Article: not found

          Tracking neuronal fiber pathways in the living human brain.

          Functional imaging with positron emission tomography and functional MRI has revolutionized studies of the human brain. Understanding the organization of brain systems, especially those used for cognition, remains limited, however, because no methods currently exist for noninvasive tracking of neuronal connections between functional regions [Crick, F. & Jones, E. (1993) Nature (London) 361, 109-110]. Detailed connectivities have been studied in animals through invasive tracer techniques, but these invasive studies cannot be done in humans, and animal results cannot always be extrapolated to human systems. We have developed noninvasive neuronal fiber tracking for use in living humans, utilizing the unique ability of MRI to characterize water diffusion. We reconstructed fiber trajectories throughout the brain by tracking the direction of fastest diffusion (the fiber direction) from a grid of seed points, and then selected tracks that join anatomically or functionally (functional MRI) defined regions. We demonstrate diffusion tracking of fiber bundles in a variety of white matter classes with examples in the corpus callosum, geniculo-calcarine, and subcortical association pathways. Tracks covered long distances, navigated through divergences and tight curves, and manifested topological separations in the geniculo-calcarine tract consistent with tracer studies in animals and retinotopy studies in humans. Additionally, previously undescribed topologies were revealed in the other pathways. This approach enhances the power of modern imaging by enabling study of fiber connections among anatomically and functionally defined brain regions in individual human subjects.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Experience-dependent structural plasticity in the adult human brain.

            Arne May (2011)
            Contrary to assumptions that changes in brain networks are possible only during crucial periods of development, research in the past decade has supported the idea of a permanently plastic brain. Novel experience, altered afferent input due to environmental changes and learning new skills are now recognized as modulators of brain function and underlying neuroanatomic circuitry. Given findings in experiments with animals and the recent discovery of increases in gray and white matter in the adult human brain as a result of learning, the old concept of cognitive reserve, that is the ability to reinforce brain volume in crucial areas and thus provide a greater threshold for age-dependent deficits, has been reinforced. The challenge we face is to unravel the exact nature of the dynamic structural alterations and, ultimately, to be able to use this knowledge for disease management. Understanding normative changes in brain structure that occur as a result of environmental changes and demands is pivotal to understanding the characteristic ability of the brain to adapt. Copyright © 2011 Elsevier Ltd. All rights reserved.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              New insights into the anatomo-functional connectivity of the semantic system: a study using cortico-subcortical electrostimulations.

              Despite a better understanding of the organization of the cortical network underlying the semantic system, very few data are currently available regarding its anatomo-functional connectivity. Here, we report on a series of 17 patients operated on under local anaesthesia for a cerebral low-grade glioma located within the dominant hemisphere. Prior to and during resection, intraoperative electrical stimulation was used to map sensorimotor and language structures so that permanent neurological deficits could be avoided. In a number of cases, cortical and subcortical stimulation caused semantic paraphasias. Using postoperative MRI, we correlated these functional findings with the anatomical locations of the sites where semantic errors were elicited by stimulation, especially at the subcortical level, with the aim of studying the connectivity underlying the semantic system. In temporal gliomas, cortical sites involved in semantic processing were found around the posterior part of the superior temporal sulcus, with subcortical pathways reproducibly located under the depth of this sulcus. In insular gliomas, although stimulation elicited no semantic disturbances at the cortical level, such semantic paraphasias were generated at the level of the anterior floor of the external capsule. In frontal tumours, cortical regions implicated in semantics were detected in the lateral orbitofrontal region and dorsolateral prefrontal cortex, with subcortical fibres located under the inferior frontal sulcus. All these eloquent structures were systematically preserved, thereby avoiding permanent postoperative deficits. Our results provide arguments in favour of the existence of a main ventral subcortical pathway underlying the semantic system, within the dominant hemisphere, joining the two essential cortical epicentres of this network: the posterior and superior temporal areas, and the orbitofrontal and dorsolateral prefontal regions. Such a ventral stream might anatomically partly correspond to the inferior fronto-occipital fasciculus.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Psychol
                Front Psychol
                Front. Psychol.
                Frontiers in Psychology
                Frontiers Media S.A.
                1664-1078
                02 October 2014
                2014
                : 5
                : 1116
                Affiliations
                [1] 1Department of Psychiatric Neurophysiology, University Hospital of Psychiatry and Psychotherapy, University of Bern Bern, Switzerland
                [2] 2Department of Clinical Psychology and Psychotherapy, Institute of Psychology, University of Bern Bern, Switzerland
                [3] 3Center for Cognition, Learning and Memory, University of Bern Bern, Switzerland
                [4] 4Department of Social Psychology, Institute of Psychology, University of Bern Bern, Switzerland
                Author notes

                Edited by: Christos Pliatsikas, University of Kent, UK

                Reviewed by: Ping Li, Penn State University, USA; Lorna Garcia Penton, Basque Center on Cognition, Brain and Language, Spain

                *Correspondence: Maria Stein, Department of Psychiatric Neurophysiology, University Hospital of Psychiatry and Psychotherapy, University of Bern, Bolligenstrasse 111, 3000 Bern 60, Switzerland e-mail: stein@ 123456puk.unibe.ch

                This article was submitted to Language Sciences, a section of the journal Frontiers in Psychology.

                Article
                10.3389/fpsyg.2014.01116
                4183087
                24474945
                c7ab317c-ad3a-496c-a977-5498fb7f5e38
                Copyright © 2014 Stein, Winkler, Kaiser and Dierks.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 20 June 2014
                : 15 September 2014
                Page count
                Figures: 0, Tables: 2, Equations: 0, References: 50, Pages: 7, Words: 0
                Categories
                Psychology
                Mini Review Article

                Clinical Psychology & Psychiatry
                bilingualism,naturalistic learning,immersion,second language,structural plasticity,vbm,dti

                Comments

                Comment on this article