3
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Smart Targeting To Improve Cancer Therapeutics

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Cancer is the second largest cause of death worldwide with the number of new cancer cases predicted to grow significantly in the next decades. Biotechnology and medicine can and should work hand-in-hand to improve cancer diagnosis and treatment efficacy. However, success has been frequently limited, in particular when treating late-stage solid tumors. There still is the need to develop smart and synergistic therapeutic approaches to achieve the synthesis of strong and effective drugs and delivery systems. Much interest has been paid to the development of smart drug delivery systems (drug-loaded particles) that utilize passive targeting, active targeting, and/or stimulus responsiveness strategies. This review will summarize some main ideas about the effect of each strategy and how the combination of some or all of them has shown to be effective. After a brief introduction of current cancer therapies and their limitations, we describe the biological barriers that nanoparticles need to overcome, followed by presenting different types of drug delivery systems to improve drug accumulation in tumors. Then, we describe cancer cell membrane targets that increase cellular drug uptake through active targeting mechanisms. Stimulus-responsive targeting is also discussed by looking at the intra- and extracellular conditions for specific drug release. We include a significant amount of information summarized in tables and figures on nanoparticle-based therapeutics, PEGylated drugs, different ligands for the design of active-targeted systems, and targeting of different organs. We also discuss some still prevailing fundamental limitations of these approaches, eg, by occlusion of targeting ligands.

          Related collections

          Most cited references 162

          • Record: found
          • Abstract: found
          • Article: not found

          A new concept for macromolecular therapeutics in cancer chemotherapy: mechanism of tumoritropic accumulation of proteins and the antitumor agent smancs.

          We previously found that a polymer conjugated to the anticancer protein neocarzinostatin, named smancs, accumulated more in tumor tissues than did neocarzinostatin. To determine the general mechanism of this tumoritropic accumulation of smancs and other proteins, we used radioactive (51Cr-labeled) proteins of various molecular sizes (Mr 12,000 to 160,000) and other properties. In addition, we used dye-complexed serum albumin to visualize the accumulation in tumors of tumor-bearing mice. Many proteins progressively accumulated in the tumor tissues of these mice, and a ratio of the protein concentration in the tumor to that in the blood of 5 was obtained within 19 to 72 h. A large protein like immunoglobulin G required a longer time to reach this value of 5. The protein concentration ratio in the tumor to that in the blood of neither 1 nor 5 was achieved with neocarzinostatin, a representative of a small protein (Mr 12,000) in all time. We speculate that the tumoritropic accumulation of these proteins resulted because of the hypervasculature, an enhanced permeability to even macromolecules, and little recovery through either blood vessels or lymphatic vessels. This accumulation of macromolecules in the tumor was also found after i.v. injection of an albumin-dye complex (Mr 69,000), as well as after injection into normal and tumor tissues. The complex was retained only by tumor tissue for prolonged periods. There was little lymphatic recovery of macromolecules from tumor tissue. The present finding is of potential value in macromolecular tumor therapeutics and diagnosis.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Tumor delivery of macromolecular drugs based on the EPR effect.

            Enhanced permeability and retention (EPR) effect is the physiology-based principal mechanism of tumor accumulation of large molecules and small particles. This specific issue of Advanced Drug Delivery Reviews is summing up multiple data on the EPR effect-based drug design and clinical outcome. In this commentary, the role of the EPR effect in the intratumoral delivery of protein and peptide drugs, macromolecular drugs and drug-loaded long-circulating pharmaceutical nanocarriers is briefly discussed together with some additional opportunities for drug delivery arising from the initial EPR effect-mediated accumulation of drug-containing macromolecular systems in tumors. Copyright © 2010 Elsevier B.V. All rights reserved.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Acidic extracellular microenvironment and cancer

              Acidic extracellular pH is a major feature of tumor tissue, extracellular acidification being primarily considered to be due to lactate secretion from anaerobic glycolysis. Clinicopathological evidence shows that transporters and pumps contribute to H+ secretion, such as the Na+/H+ exchanger, the H+-lactate co-transporter, monocarboxylate transporters, and the proton pump (H+-ATPase); these may also be associated with tumor metastasis. An acidic extracellular pH not only activates secreted lysosomal enzymes that have an optimal pH in the acidic range, but induces the expression of certain genes of pro-metastatic factors through an intracellular signaling cascade that is different from hypoxia. In addition to lactate, CO2 from the pentose phosphate pathway is an alternative source of acidity, showing that hypoxia and extracellular acidity are, while being independent from each other, deeply associated with the cellular microenvironment. In this article, the importance of an acidic extracellular pH as a microenvironmental factor participating in tumor progression is reviewed.
                Bookmark

                Author and article information

                Journal
                Drug Des Devel Ther
                Drug Des Devel Ther
                DDDT
                dddt
                Drug Design, Development and Therapy
                Dove
                1177-8881
                30 October 2019
                2019
                : 13
                : 3753-3772
                Affiliations
                [1 ]Department of Chemistry, University of Puerto Rico, Río Piedras Campus , San Juan, PR, USA
                [2 ]Department of Biochemistry & Pharmacology, San Juan Bautista School of Medicine , Caguas, PR, USA
                [3 ]Department of Chemistry, University of Puerto Rico, Humacao Campus , Humacao, PR, USA
                [4 ]Department of Math and Sciences, Polytechnic University of Puerto Rico , San Juan, PR, USA
                Author notes
                Correspondence: Yamixa Delgado PO Box 4968 Caguas, PR00726-4968, USATel +1 787 743 3038Fax +1 787 746 3093 Email ydelgado@sanjuanbautista.edu
                Kai Griebenow 17 Ave Universidad STE 1701, San Juan, PR00925-2537, USATel +1 787 764 0000Fax +1 787 746 3093 Email kai.griebenow@upr.edu
                [*]

                These authors contributed equally to this work

                Article
                219489
                10.2147/DDDT.S219489
                6826196
                © 2019 Morales-Cruz et al.

                This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at https://www.dovepress.com/terms.php and incorporate the Creative Commons Attribution – Non Commercial (unported, v3.0) License ( http://creativecommons.org/licenses/by-nc/3.0/). By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms ( https://www.dovepress.com/terms.php).

                Page count
                Figures: 3, Tables: 5, References: 208, Pages: 20
                Categories
                Review

                Comments

                Comment on this article