45
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      A Computational Model Predicting Disruption of Blood Vessel Development

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Vascular development is a complex process regulated by dynamic biological networks that vary in topology and state across different tissues and developmental stages. Signals regulating de novo blood vessel formation (vasculogenesis) and remodeling (angiogenesis) come from a variety of biological pathways linked to endothelial cell (EC) behavior, extracellular matrix (ECM) remodeling and the local generation of chemokines and growth factors. Simulating these interactions at a systems level requires sufficient biological detail about the relevant molecular pathways and associated cellular behaviors, and tractable computational models that offset mathematical and biological complexity. Here, we describe a novel multicellular agent-based model of vasculogenesis using the CompuCell3D ( http://www.compucell3d.org/) modeling environment supplemented with semi-automatic knowledgebase creation. The model incorporates vascular endothelial growth factor signals, pro- and anti-angiogenic inflammatory chemokine signals, and the plasminogen activating system of enzymes and proteases linked to ECM interactions, to simulate nascent EC organization, growth and remodeling. The model was shown to recapitulate stereotypical capillary plexus formation and structural emergence of non-coded cellular behaviors, such as a heterologous bridging phenomenon linking endothelial tip cells together during formation of polygonal endothelial cords. Molecular targets in the computational model were mapped to signatures of vascular disruption derived from in vitro chemical profiling using the EPA's ToxCast high-throughput screening (HTS) dataset. Simulating the HTS data with the cell-agent based model of vascular development predicted adverse effects of a reference anti-angiogenic thalidomide analog, 5HPP-33, on in vitro angiogenesis with respect to both concentration-response and morphological consequences. These findings support the utility of cell agent-based models for simulating a morphogenetic series of events and for the first time demonstrate the applicability of these models for predictive toxicology.

          Author Summary

          We built a novel computational model of vascular development that includes multiple cell types responding to growth factor signaling, inflammatory chemokine pathways and extracellular matrix interactions. This model represents the normal biology of capillary plexus formation, both in terms of morphology and emergent behaviors. Based on in vitro high-throughput screening data from EPA's ToxCast program, we can simulate chemical exposures that disrupt blood vessel formation. Simulated results of an anti-angiogenic thalidomide compound were highly comparable to results in an endothelial tube formation assay. This model demonstrates the utility of computational approaches for simulating developmental biology and predicting chemical toxicity.

          Related collections

          Most cited references66

          • Record: found
          • Abstract: found
          • Article: not found

          Endothelial cell migration during angiogenesis.

          Endothelial cell migration is essential to angiogenesis. This motile process is directionally regulated by chemotactic, haptotactic, and mechanotactic stimuli and further involves degradation of the extracellular matrix to enable progression of the migrating cells. It requires the activation of several signaling pathways that converge on cytoskeletal remodeling. Then, it follows a series of events in which the endothelial cells extend, contract, and throw their rear toward the front and progress forward. The aim of this review is to give an integrative view of the signaling mechanisms that govern endothelial cell migration in the context of angiogenesis.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            A Computational Tool for Quantitative Analysis of Vascular Networks

            Angiogenesis is the generation of mature vascular networks from pre-existing vessels. Angiogenesis is crucial during the organism' development, for wound healing and for the female reproductive cycle. Several murine experimental systems are well suited for studying developmental and pathological angiogenesis. They include the embryonic hindbrain, the post-natal retina and allantois explants. In these systems vascular networks are visualised by appropriate staining procedures followed by microscopical analysis. Nevertheless, quantitative assessment of angiogenesis is hampered by the lack of readily available, standardized metrics and software analysis tools. Non-automated protocols are being used widely and they are, in general, time - and labour intensive, prone to human error and do not permit computation of complex spatial metrics. We have developed a light-weight, user friendly software, AngioTool, which allows for quick, hands-off and reproducible quantification of vascular networks in microscopic images. AngioTool computes several morphological and spatial parameters including the area covered by a vascular network, the number of vessels, vessel length, vascular density and lacunarity. In addition, AngioTool calculates the so-called “branching index” (branch points / unit area), providing a measurement of the sprouting activity of a specimen of interest. We have validated AngioTool using images of embryonic murine hindbrains, post-natal retinas and allantois explants. AngioTool is open source and can be downloaded free of charge.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Vasculogenesis.

              Induction by fibroblast growth factors of mesoderm during gastrulation leads to blood-forming tissue, including angioblasts and hemopoietic cells, that together constitute the blood islands of the yolk sac. The differentiation of angioblasts from mesoderm and the formation of primitive blood vessels from angioblasts at or near the site of their origin are the two distinct steps during the onset of vascularization that are defined as vasculogenesis. Vascular endothelial growth factor and its high-affinity receptor tyrosine kinase flk-1 represent a paracrine signaling system crucial for the differentiation of endothelial cells and the development of the vascular system. Specified cell adhesion molecules such as VE-cadherin and PECAM-1 (CD-31), and transcription factors such as ets-1, as well as mechanical forces and vascular regression and remodeling are involved in the subsequent events of endothelial cell differentiation, apoptosis, and angiogenesis.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS Comput Biol
                PLoS Comput. Biol
                plos
                ploscomp
                PLoS Computational Biology
                Public Library of Science (San Francisco, USA )
                1553-734X
                1553-7358
                April 2013
                April 2013
                4 April 2013
                : 9
                : 4
                : e1002996
                Affiliations
                [1 ]National Center for Computational Toxicology, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina, United States of America
                [2 ]Lockheed-Martin, Research Triangle Park, North Carolina, United States of America
                University of Virginia, United States of America
                Author notes

                The authors have declared that no competing interests exist.

                Conceived and designed the experiments: NK DD TK. Performed the experiments: NK. Analyzed the data: NK. Contributed reagents/materials/analysis tools: NK MR NB NS DR RS. Wrote the paper: NK TK.

                Article
                PCOMPBIOL-D-12-01096
                10.1371/journal.pcbi.1002996
                3616981
                23592958
                c7b4b2c0-e15f-4cad-ab3e-dc343b0fe585
                Copyright @ 2013

                This is an open-access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication.

                History
                : 3 July 2012
                : 24 January 2013
                Page count
                Pages: 20
                Funding
                This work was funded by the U.S. EPA. The views expressed in this article are those of the authors and do not necessarily reflect the views or policies of the U.S. Environmental Protection Agency. Mention of trade names or commercial products does not constitute endorsement or recommendation for use. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
                Categories
                Research Article
                Biology
                Systems Biology
                Toxicology
                Predictive Toxicology

                Quantitative & Systems biology
                Quantitative & Systems biology

                Comments

                Comment on this article