50
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      β-Catenin-Dependent Signaling Pathway Contributes to Renal Fibrosis in Hypertensive Rats

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The mechanism of hypertension-induced renal fibrosis is not well understood, although it is established that high levels of angiotensin II contribute to the effect. Since β-catenin signal transduction participates in fibrotic processes, we evaluated the contribution of β-catenin-dependent signaling pathway in hypertension-induced renal fibrosis. Two-kidney one-clip (2K1C) hypertensive rats were treated with lisinopril (10 mg/kg/day for four weeks) or with pyrvinium pamoate (Wnt signaling inhibitor, single dose of 60 ug/kg, every 3 days for 2 weeks). The treatment with lisinopril reduced the systolic blood pressure from 220 ± 4 in 2K1C rats to 112 ± 5 mmHg ( P < 0.05), whereas the reduction in blood pressure with pyrvinium pamoate was not significant (212 ± 6 in 2K1C rats to 170 ± 3 mmHg, P > 0.05). The levels of collagen types I and III, osteopontin, and fibronectin decreased in the unclipped kidney in both treatments compared with 2K1C rats. The expressions of β-catenin, p-Ser9-GSK-3beta, and the β-catenin target genes cyclin D1, c-myc, and bcl-2 significantly decreased in unclipped kidney in both treatments ( P < 0.05). In this study we provided evidence that β-catenin-dependent signaling pathway participates in the renal fibrosis induced in 2K1C rats.

          Related collections

          Most cited references40

          • Record: found
          • Abstract: found
          • Article: not found

          The intrarenal renin-angiotensin system: from physiology to the pathobiology of hypertension and kidney disease.

          In recent years, the focus of interest on the role of the renin-angiotensin system (RAS) in the pathophysiology of hypertension and organ injury has changed to a major emphasis on the role of the local RAS in specific tissues. In the kidney, all of the RAS components are present and intrarenal angiotensin II (Ang II) is formed by independent multiple mechanisms. Proximal tubular angiotensinogen, collecting duct renin, and tubular angiotensin II type 1 (AT1) receptors are positively augmented by intrarenal Ang II. In addition to the classic RAS pathways, prorenin receptors and chymase are also involved in local Ang II formation in the kidney. Moreover, circulating Ang II is actively internalized into proximal tubular cells by AT1 receptor-dependent mechanisms. Consequently, Ang II is compartmentalized in the renal interstitial fluid and the proximal tubular compartments with much higher concentrations than those existing in the circulation. Recent evidence has also revealed that inappropriate activation of the intrarenal RAS is an important contributor to the pathogenesis of hypertension and renal injury. Thus, it is necessary to understand the mechanisms responsible for independent regulation of the intrarenal RAS. In this review, we will briefly summarize our current understanding of independent regulation of the intrarenal RAS and discuss how inappropriate activation of this system contributes to the development and maintenance of hypertension and renal injury. We will also discuss the impact of antihypertensive agents in preventing the progressive increases in the intrarenal RAS during the development of hypertension and renal injury.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Diverse Roles of TGF-β/Smads in Renal Fibrosis and Inflammation

            TGF-β1 has been long considered as a key mediator in renal fibrosis and induces renal scarring largely by activating its downstream Smad signaling pathway. Interestingly, while mice overexpressing active TGF-β1 develop progressive renal injury, latent TGF-β1 plays a protective role in renal fibrosis and inflammation. Under disease conditions, Smad2 and Smad3 are highly activated, while Smad7 is degraded through the ubiquitin proteasome degradation mechanism. In addition to TGF-β1, many pathogenic mediators such as angiotensin II and advanced glycation end products can also activate the Smad pathway via both TGF-β-dependent and independent mechanisms. Smads interact with other signaling pathways, such as the MAPK and NF-κB pathways, to positively or negatively regulate renal inflammation and fibrosis. Studies from gene knockout mice demonstrate that TGF-β1 acts by stimulating its downstream Smads to diversely regulate kidney injury. In the context of renal fibrosis and inflammation, Smad3 is pathogenic, while Smad2 and Smad7 are protective. Smad4 exerts its diverse roles by transcriptionally enhancing Smad3-mediated renal fibrosis while inhibiting NF-κB-driven renal inflammation via a Smad7-dependent mechanism. Furthermore, we also demonstrated that TGF-β1 acts by stimulating Smad3 to positively or negatively regulate microRNAs to exert its fibrotic role in kidney disease. In conclusion, TGF-β/Smad signaling is a major pathway leading to kidney disease. Smad3 is a key mediator in renal fibrosis and inflammation, whereas Smad2 and Smad7 are renoprotective. Smad4 exerts its diverse role in promoting renal fibrosis while inhibiting inflammation. Thus, targeting the downstream TGF-β/Smad3 signaling pathway by gene transfer of either Smad7 or Smad3-dependent microRNAs may represent a specific and effective therapeutic strategy for kidney disease.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Emerging roles of Wnts in the adult nervous system.

              The roles of the Wnt signalling pathway in several developmental processes, including synaptic differentiation, are well characterized. The expression of Wnt ligands and Wnt signalling components in the mature mammalian CNS suggests that this pathway might also play a part in synaptic maintenance and function. In fact, Wnts have a crucial role in synaptic physiology, as they modulate the synaptic vesicle cycle, the trafficking of neurotransmitter receptors and the interaction of these receptors with scaffold proteins in postsynaptic regions. In addition, Wnts participate in adult neurogenesis and protect excitatory synaptic terminals from amyloid-beta oligomer toxicity. Here, the latest insights into the function of Wnt signalling in the adult nervous system and therapeutic opportunities for neurodegenerative diseases such as Alzheimer's and Parkinson's disease are discussed.
                Bookmark

                Author and article information

                Journal
                Biomed Res Int
                Biomed Res Int
                BMRI
                BioMed Research International
                Hindawi Publishing Corporation
                2314-6133
                2314-6141
                2015
                7 April 2015
                : 2015
                : 726012
                Affiliations
                1Department of Physiology, Faculty of Biological Sciences, Pontificia Universidad Catolica de Chile, Alameda 340, 8331150 Santiago, Chile
                2Department of Cellular and Molecular Biology, Faculty of Biological Sciences, Pontificia Universidad Catolica de Chile, Alameda 340, 8331150 Santiago, Chile
                3Center for Aging and Regeneration CARE-Chile UC, Pontificia Universidad Catolica de Chile, Alameda 340, 8331150 Santiago, Chile
                Author notes
                *Carlos P. Vio: cvio@ 123456uc.cl

                Academic Editor: John J. Gildea

                Article
                10.1155/2015/726012
                4405227
                25945342
                c7b91140-33ae-488d-bf03-27f29f27250b
                Copyright © 2015 Catherina A. Cuevas et al.

                This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 30 November 2014
                : 16 March 2015
                : 17 March 2015
                Categories
                Research Article

                Comments

                Comment on this article