3
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Muscle Carnitine Palmitoyltransferase II (CPT II) Deficiency: A Conceptual Approach

      review-article
      * ,
      Molecules
      MDPI
      CPT II, muscle, rhabdomyolysis, fatty acids, mutation, Genotype-Phenotype

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Carnitine palmitoyltransferase (CPT) catalyzes the transfer of long- and medium-chain fatty acids from cytoplasm into mitochondria, where oxidation of fatty acids takes place. Deficiency of CPT enzyme is associated with rare diseases of fatty acid metabolism. CPT is present in two subforms: CPT I at the outer mitochondrial membrane and carnitine palmitoyltransferase II (CPT II) inside the mitochondria. Deficiency of CPT II results in the most common inherited disorder of long-chain fatty acid oxidation affecting skeletal muscle. There is a lethal neonatal form, a severe infantile hepato-cardio-muscular form, and a rather mild myopathic form characterized by exercise-induced myalgia, weakness, and myoglobinuria. Total CPT activity (CPT I + CPT II) in muscles of CPT II-deficient patients is generally normal. Nevertheless, in some patients, not detectable to reduced total activities are also reported. CPT II protein is also shown in normal concentration in patients with normal CPT enzymatic activity. However, residual CPT II shows abnormal inhibition sensitivity towards malonyl-CoA, Triton X-100 and fatty acid metabolites in patients. Genetic studies have identified a common p.Ser113Leu mutation in the muscle form along with around 100 different rare mutations. The biochemical consequences of these mutations have been controversial. Hypotheses include lack of enzymatically active protein, partial enzyme deficiency and abnormally regulated enzyme. The recombinant enzyme experiments that we recently conducted have shown that CPT II enzyme is extremely thermoliable and is abnormally inhibited by different emulsifiers and detergents such as malonyl-CoA, palmitoyl-CoA, palmitoylcarnitine, Tween 20 and Triton X-100. Here, we present a conceptual overview on CPT II deficiency based on our own findings and on results from other studies addressing clinical, biochemical, histological, immunohistological and genetic aspects, as well as recent advancements in diagnosis and therapeutic strategies in this disorder.

          Related collections

          Most cited references90

          • Record: found
          • Abstract: found
          • Article: not found

          mTORC1 Regulates Mitochondrial Integrated Stress Response and Mitochondrial Myopathy Progression.

          Mitochondrial dysfunction elicits various stress responses in different model systems, but how these responses relate to each other and contribute to mitochondrial disease has remained unclear. Mitochondrial myopathy (MM) is the most common manifestation of adult-onset mitochondrial disease and shows a multifaceted tissue-specific stress response: (1) transcriptional response, including metabolic cytokines FGF21 and GDF15; (2) remodeling of one-carbon metabolism; and (3) mitochondrial unfolded protein response. We show that these processes are part of one integrated mitochondrial stress response (ISRmt), which is controlled by mTORC1 in muscle. mTORC1 inhibition by rapamycin downregulated all components of ISRmt, improved all MM hallmarks, and reversed the progression of even late-stage MM, without inducing mitochondrial biogenesis. Our evidence suggests that (1) chronic upregulation of anabolic pathways contributes to MM progression, (2) long-term induction of ISRmt is not protective for muscle, and (3) rapamycin treatment trials should be considered for adult-type MM with raised FGF21.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Fibroblast growth factor 21-deficient mice demonstrate impaired adaptation to ketosis.

            Fibroblast growth factor 21 (FGF21) is a key metabolic regulator. Expressed primarily in liver and adipose tissue, FGF21 is induced via peroxisome proliferator-activated receptor (PPAR) pathways during states requiring increased fatty acid oxidation including fasting and consumption of a ketogenic diet. To test the hypothesis that FGF21 is a physiological regulator that plays a role in lipid oxidation, we generated mice with targeted disruption of the Fgf21 locus (FGF21 knockout). Mice lacking FGF21 had mild weight gain and slightly impaired glucose homeostasis, indicating a role in long-term energy homeostasis. Furthermore, FGF21KO mice tolerated a 24-h fast, indicating that FGF21 is not essential in the early stages of starvation. In contrast to wild-type animals in which feeding KD leads to dramatic weight loss, FGF21KO mice fed KD gained weight, developed hepatosteatosis, and showed marked impairments in ketogenesis and glucose control. This confirms the physiological importance of FGF21 in the adaptation to KD feeding. At a molecular level, these effects were accompanied by lower levels of expression of PGC1alpha and PGC1beta in FGF21KO mice, strongly implicating these key transcriptional regulators in the action of FGF21. Furthermore, within the liver, the maturation of the lipogenic transcription factor sterol regulatory element-binding protein-1c was increased in FGF21KO mice, implicating posttranscriptional events in the maladaptation of FGF21KO mice to KD. These data reinforce the role of FGF21 is a critical regulator of long-term energy balance and metabolism. Mice lacking FGF21 cannot respond appropriately to a ketogenic diet, resulting in an impaired ability to mobilize and utilize lipids.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              The modification of mammalian membrane polyunsaturated fatty acid composition in relation to membrane fluidity and function.

                Bookmark

                Author and article information

                Contributors
                Role: Academic Editor
                Journal
                Molecules
                Molecules
                molecules
                Molecules
                MDPI
                1420-3049
                13 April 2020
                April 2020
                : 25
                : 8
                : 1784
                Affiliations
                Department of Neurology, Martin-Luther-University Halle-Wittenberg, Ernst-Grube Str. 40, 06120 Halle (Saale), Germany; stephan.zierz@ 123456uk-halle.de
                Author notes
                [* ]Correspondence: pushpa.joshi@ 123456medizin.uni-halle.de ; Tel.: +49-345-557-5259; Fax: +49-345-557-3505
                Article
                molecules-25-01784
                10.3390/molecules25081784
                7221885
                32295037
                c7bcbf49-277e-4b66-ad7b-c017377c66af
                © 2020 by the authors.

                Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).

                History
                : 20 February 2020
                : 11 April 2020
                Categories
                Review

                cpt ii,muscle,rhabdomyolysis,fatty acids,mutation,genotype-phenotype

                Comments

                Comment on this article