46
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Interactivity and Reward-Related Neural Activation during a Serious Videogame

      research-article
      1 , 2 , 2 , *
      PLoS ONE
      Public Library of Science

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          This study sought to determine whether playing a “serious” interactive digital game (IDG) – the Re-Mission videogame for cancer patients – activates mesolimbic neural circuits associated with incentive motivation, and if so, whether such effects stem from the participatory aspects of interactive gameplay, or from the complex sensory/perceptual engagement generated by its dynamic event-stream. Healthy undergraduates were randomized to groups in which they were scanned with functional magnetic resonance imaging (FMRI) as they either actively played Re-Mission or as they passively observed a gameplay audio-visual stream generated by a yoked active group subject. Onset of interactive game play robustly activated mesolimbic projection regions including the caudate nucleus and nucleus accumbens, as well as a subregion of the parahippocampal gyrus. During interactive gameplay, subjects showed extended activation of the thalamus, anterior insula, putamen, and motor-related regions, accompanied by decreased activation in parietal and medial prefrontal cortex. Offset of interactive gameplay activated the anterior insula and anterior cingulate. Between-group comparisons of within-subject contrasts confirmed that mesolimbic activation was significantly more pronounced in the active playgroup than in the passive exposure control group. Individual difference analyses also found the magnitude of parahippocampal activation following gameplay onset to correlate with positive attitudes toward chemotherapy assessed both at the end of the scanning session and at an unannounced one-month follow-up. These findings suggest that IDG-induced activation of reward-related mesolimbic neural circuits stems primarily from participatory engagement in gameplay (interactivity), rather than from the effects of vivid and dynamic sensory stimulation.

          Related collections

          Most cited references35

          • Record: found
          • Abstract: found
          • Article: not found

          Reward-motivated learning: mesolimbic activation precedes memory formation.

          We examined anticipatory mechanisms of reward-motivated memory formation using event-related FMRI. In a monetary incentive encoding task, cues signaled high- or low-value reward for memorizing an upcoming scene. When tested 24 hr postscan, subjects were significantly more likely to remember scenes that followed cues for high-value rather than low-value reward. A monetary incentive delay task independently localized regions responsive to reward anticipation. In the encoding task, high-reward cues preceding remembered but not forgotten scenes activated the ventral tegmental area, nucleus accumbens, and hippocampus. Across subjects, greater activation in these regions predicted superior memory performance. Within subject, increased correlation between the hippocampus and ventral tegmental area was associated with enhanced long-term memory for the subsequent scene. These findings demonstrate that brain activation preceding stimulus encoding can predict declarative memory formation. The findings are consistent with the hypothesis that reward motivation promotes memory formation via dopamine release in the hippocampus prior to learning.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The neural basis of financial risk taking.

            Investors systematically deviate from rationality when making financial decisions, yet the mechanisms responsible for these deviations have not been identified. Using event-related fMRI, we examined whether anticipatory neural activity would predict optimal and suboptimal choices in a financial decision-making task. We characterized two types of deviations from the optimal investment strategy of a rational risk-neutral agent as risk-seeking mistakes and risk-aversion mistakes. Nucleus accumbens activation preceded risky choices as well as risk-seeking mistakes, while anterior insula activation preceded riskless choices as well as risk-aversion mistakes. These findings suggest that distinct neural circuits linked to anticipatory affect promote different types of financial choices and indicate that excessive activation of these circuits may lead to investing mistakes. Thus, consideration of anticipatory neural mechanisms may add predictive power to the rational actor model of economic decision making.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Reward-related FMRI activation of dopaminergic midbrain is associated with enhanced hippocampus-dependent long-term memory formation.

              Long-term potentiation in the hippocampus can be enhanced and prolonged by dopaminergic inputs from midbrain structures such as the substantia nigra. This improved synaptic plasticity is hypothesized to be associated with better memory consolidation in the hippocampus. We used a condition that reliably elicits a dopaminergic response, reward anticipation, to study the relationship between activity of dopaminergic midbrain areas and hippocampal long-term memory in healthy adults. Pictures of object drawings that predicted monetary reward were associated with stronger fMRI activity in reward-related brain areas, including the substantia nigra, compared with non-reward-predicting pictures. Three weeks later, recollection and source memory were better for reward-predicting than for non-reward-predicting pictures. FMRI activity in the hippocampus and the midbrain was higher for reward-predicting pictures that were later recognized compared with later forgotten pictures. These data are consistent with the hypothesis that activation of dopaminergic midbrain regions enhances hippocampus-dependent memory formation, possibly by enhancing consolidation.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS One
                plos
                plosone
                PLoS ONE
                Public Library of Science (San Francisco, USA )
                1932-6203
                2012
                19 March 2012
                : 7
                : 3
                : e33909
                Affiliations
                [1 ]HopeLab Foundation, Redwood City, California, United States of America
                [2 ]Department of Psychology, Stanford University, Stanford, California, United States of America
                Sanford-Burnham Medical Research Institute, United States of America
                Author notes

                Conceived and designed the experiments: SC BK. Performed the experiments: SC DY BK. Analyzed the data: SC DY BK. Contributed reagents/materials/analysis tools: SC DY BK. Wrote the paper: SC DY BK.

                Article
                PONE-D-11-15712
                10.1371/journal.pone.0033909
                3307771
                22442733
                c7d7cdfe-ae27-45be-983c-9ce207ef49c6
                Cole et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
                History
                : 12 August 2011
                : 20 February 2012
                Page count
                Pages: 9
                Categories
                Research Article
                Biology
                Anatomy and Physiology
                Neurological System
                Molecular Cell Biology
                Signal Transduction
                Membrane Receptor Signaling
                Neuroscience
                Medicine
                Radiology
                Diagnostic Radiology
                Social and Behavioral Sciences
                Psychology
                Behavior

                Uncategorized
                Uncategorized

                Comments

                Comment on this article