37
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Genetic adaptation to captivity can occur in a single generation.

      Proceedings of the National Academy of Sciences of the United States of America
      Adaptation, Physiological, genetics, Animals, Breeding, Crosses, Genetic, Female, Fishes, physiology, Male, Pedigree, Reproduction

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Captive breeding programs are widely used for the conservation and restoration of threatened and endangered species. Nevertheless, captive-born individuals frequently have reduced fitness when reintroduced into the wild. The mechanism for these fitness declines has remained elusive, but hypotheses include environmental effects of captive rearing, inbreeding among close relatives, relaxed natural selection, and unintentional domestication selection (adaptation to captivity). We used a multigenerational pedigree analysis to demonstrate that domestication selection can explain the precipitous decline in fitness observed in hatchery steelhead released into the Hood River in Oregon. After returning from the ocean, wild-born and first-generation hatchery fish were used as broodstock in the hatchery, and their offspring were released into the wild as smolts. First-generation hatchery fish had nearly double the lifetime reproductive success (measured as the number of returning adult offspring) when spawned in captivity compared with wild fish spawned under identical conditions, which is a clear demonstration of adaptation to captivity. We also documented a tradeoff among the wild-born broodstock: Those with the greatest fitness in a captive environment produced offspring that performed the worst in the wild. Specifically, captive-born individuals with five (the median) or more returning siblings (i.e., offspring of successful broodstock) averaged 0.62 returning offspring in the wild, whereas captive-born individuals with less than five siblings averaged 2.05 returning offspring in the wild. These results demonstrate that a single generation in captivity can result in a substantial response to selection on traits that are beneficial in captivity but severely maladaptive in the wild.

          Related collections

          Most cited references24

          • Record: found
          • Abstract: found
          • Article: not found

          Statistical confidence for likelihood-based paternity inference in natural populations.

          Paternity inference using highly polymorphic codominant markers is becoming common in the study of natural populations. However, multiple males are often found to be genetically compatible with each offspring tested, even when the probability of excluding an unrelated male is high. While various methods exist for evaluating the likelihood of paternity of each nonexcluded male, interpreting these likelihoods has hitherto been difficult, and no method takes account of the incomplete sampling and error-prone genetic data typical of large-scale studies of natural systems. We derive likelihood ratios for paternity inference with codominant markers taking account of typing error, and define a statistic delta for resolving paternity. Using allele frequencies from the study population in question, a simulation program generates criteria for delta that permit assignment of paternity to the most likely male with a known level of statistical confidence. The simulation takes account of the number of candidate males, the proportion of males that are sampled and gaps and errors in genetic data. We explore the potentially confounding effect of relatives and show that the method is robust to their presence under commonly encountered conditions. The method is demonstrated using genetic data from the intensively studied red deer (Cervus elaphus) population on the island of Rum, Scotland. The Windows-based computer program, CERVUS, described in this study is available from the authors. CERVUS can be used to calculate allele frequencies, run simulations and perform parentage analysis using data from all types of codominant markers.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The genetics of inbreeding depression.

            Inbreeding depression - the reduced survival and fertility of offspring of related individuals - occurs in wild animal and plant populations as well as in humans, indicating that genetic variation in fitness traits exists in natural populations. Inbreeding depression is important in the evolution of outcrossing mating systems and, because intercrossing inbred strains improves yield (heterosis), which is important in crop breeding, the genetic basis of these effects has been debated since the early twentieth century. Classical genetic studies and modern molecular evolutionary approaches now suggest that inbreeding depression and heterosis are predominantly caused by the presence of recessive deleterious mutations in populations.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Developing the science of reintroduction biology.

              With recent increases in the numbers of species reintroduction projects and reintroduction-related publications, there is now a recognizable field of reintroduction biology. Nevertheless, research thus far has been fragmented and ad hoc, rather than an organized attempt to gain reliable knowledge to improve reintroduction success. We reviewed 454 recent (1990-2005) peer-reviewed papers dealing with wildlife reintroductions from 101 journals. Most research has been retrospective, either opportunistic evaluations of techniques or general project summaries, and most inference is gained from post hoc interpretation of monitoring results on a species-by-species basis. Documentation of reintroduction outcomes has improved, however, and the derivation of more general principles via meta-analyses is expected to increase. The fragmentation of the reintroduction literature remains an obstacle. There is scope to improve reintroduction biology by greater application of the hypothetico-deductive method, particularly through the use of modeling approaches and well-designed experiments. Examples of fruitful approaches in reintroduction research include experimental studies to improve outcomes from the release of captive-bred animals, use of simulation modeling to identify factors affecting the viability of reintroduced populations, and the application of spatially explicit models to plan for and evaluate reintroductions. We recommend that researchers contemplating future reintroductions carefully determine a priori the specific goals, overall ecological purpose, and inherent technical and biological limitations of a given reintroduction and that evaluation processes incorporate both experimental and modeling approaches. We suggest that the best progress will be made when multidisciplinary teams of resource managers and scientists work in close collaboration and when results from comparative analyses, experiments, and modeling are combined within and among studies.
                Bookmark

                Author and article information

                Journal
                22184236
                3252900
                10.1073/pnas.1111073109

                Chemistry
                Adaptation, Physiological,genetics,Animals,Breeding,Crosses, Genetic,Female,Fishes,physiology,Male,Pedigree,Reproduction

                Comments

                Comment on this article