Blog
About

70
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Identification of novel cytolytic peptides as key virulence determinants for community-associated MRSA.

      Nature medicine

      Virulence, metabolism, Staphylococcus aureus, microbiology, etiology, drug therapy, Staphylococcal Infections, immunology, Skin, chemistry, Peptides, Neutrophils, Mice, pharmacology, Methicillin, Humans, Gene Expression Regulation, Bacterial, Drug Resistance, Bacterial, Disease Models, Animal, pathology, Community-Acquired Infections, Animals

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Methicillin-resistant Staphylococcus aureus (MRSA) remains a major human pathogen. Traditionally, MRSA infections occurred exclusively in hospitals and were limited to immunocompromised patients or individuals with predisposing risk factors. However, recently there has been an alarming epidemic caused by community-associated (CA)-MRSA strains, which can cause severe infections that can result in necrotizing fasciitis or even death in otherwise healthy adults outside of healthcare settings. In the US, CA-MRSA is now the cause of the majority of infections that result in trips to the emergency room. It is unclear what makes CA-MRSA strains more successful in causing human disease compared with their hospital-associated counterparts. Here we describe a class of secreted staphylococcal peptides that have a remarkable ability to recruit, activate and subsequently lyse human neutrophils, thus eliminating the main cellular defense against S. aureus infection. These peptides are produced at high concentrations by standard CA-MRSA strains and contribute significantly to the strains' ability to cause disease in animal models of infection. Our study reveals a previously uncharacterized set of S. aureus virulence factors that account at least in part for the enhanced virulence of CA-MRSA.

          Related collections

          Author and article information

          Journal
          10.1038/nm1656
          17994102

          Comments

          Comment on this article