Blog
About

0
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Halide‐Based Materials and Chemistry for Rechargeable Batteries

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references 356

          • Record: found
          • Abstract: not found
          • Article: not found

          Building better batteries.

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Applications of ionic liquids in the chemical industry.

            In contrast to a recently expressed, and widely cited, view that "Ionic liquids are starting to leave academic labs and find their way into a wide variety of industrial applications", we demonstrate in this critical review that there have been parallel and collaborative exchanges between academic research and industrial developments since the materials were first reported in 1914 (148 references).
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Prototype systems for rechargeable magnesium batteries.

               R Turgeman,  Z. Lu,  G Aurbach (2000)
              The thermodynamic properties of magnesium make it a natural choice for use as an anode material in rechargeable batteries, because it may provide a considerably higher energy density than the commonly used lead-acid and nickel-cadmium systems. Moreover, in contrast to lead and cadmium, magnesium is inexpensive, environmentally friendly and safe to handle. But the development of Mg batteries has been hindered by two problems. First, owing to the chemical activity of Mg, only solutions that neither donate nor accept protons are suitable as electrolytes; but most of these solutions allow the growth of passivating surface films, which inhibit any electrochemical reaction. Second, the choice of cathode materials has been limited by the difficulty of intercalating Mg ions in many hosts. Following previous studies of the electrochemistry of Mg electrodes in various non-aqueous solutions, and of a variety of intercalation electrodes, we have now developed rechargeable Mg battery systems that show promise for applications. The systems comprise electrolyte solutions based on Mg organohaloaluminate salts, and Mg(x)Mo3S4 cathodes, into which Mg ions can be intercalated reversibly, and with relatively fast kinetics. We expect that further improvements in the energy density will make these batteries a viable alternative to existing systems.
                Bookmark

                Author and article information

                Journal
                Angewandte Chemie International Edition
                Angew. Chem. Int. Ed.
                Wiley
                1433-7851
                1521-3773
                April 06 2020
                January 09 2020
                April 06 2020
                : 59
                : 15
                : 5902-5949
                Affiliations
                [1 ]State Key Laboratory of Materials-Oriented Chemical EngineeringJiangsu Collaborative Innovation Center for Advanced Inorganic Functional CompositesCollege of Materials Science and EngineeringNanjing Tech University Nanjing 211816 China
                [2 ]Helmholtz Institute Ulm (HIU)Electrochemical Energy Storage Helmholtzstrasse 11 89081 Ulm Germany
                [3 ]Institute of NanotechnologyKarlsruhe Institute of Technology (KIT) 76344 Eggenstein-Leopoldshafen Germany
                Article
                10.1002/anie.201902842
                © 2020

                http://onlinelibrary.wiley.com/termsAndConditions#vor

                http://doi.wiley.com/10.1002/tdm_license_1.1

                Comments

                Comment on this article