21
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Mining Community-Level Influence in Microblogging Network: A Case Study on Sina Weibo

      , ,

      Complexity

      Hindawi Limited

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Social influence analysis is important for many social network applications, including recommendation and cybersecurity analysis. We observe that the influence of community including multiple users outweighs the individual influence. Existing models focus on the individual influence analysis, but few studies estimate the community influence that is ubiquitous in online social network. A major challenge lies in that researchers need to take into account many factors, such as user influence, social trust, and user relationship, to model community-level influence. In this paper, aiming to assess the community-level influence effectively and accurately, we formulate the problem of modeling community influence and construct a community-level influence analysis model. It first eliminates the zombie fans and then calculates the user influence. Next, it calculates the user final influence by combining the user influence and the willingness of diffusing theme information. Finally, it evaluates the community influence by comprehensively studying the user final influence, social trust, and relationship tightness between intrausers of communities. To handle real-world applications, we propose a community-level influence analysis algorithm called CIAA. Empirical studies on a real-world dataset from Sina Weibo demonstrate the superiority of the proposed model.

          Related collections

          Most cited references 33

          • Record: found
          • Abstract: not found
          • Article: not found

          PageRank Beyond the Web

            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Detecting Automation of Twitter Accounts: Are You a Human, Bot, or Cyborg?

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Identification of essential proteins based on edge clustering coefficient.

              Identification of essential proteins is key to understanding the minimal requirements for cellular life and important for drug design. The rapid increase of available protein-protein interaction (PPI) data has made it possible to detect protein essentiality on network level. A series of centrality measures have been proposed to discover essential proteins based on network topology. However, most of them tended to focus only on the location of single protein, but ignored the relevance between interactions and protein essentiality. In this paper, a new centrality measure for identifying essential proteins based on edge clustering coefficient, named as NC, is proposed. Different from previous centrality measures, NC considers both the centrality of a node and the relationship between it and its neighbors. For each interaction in the network, we calculate its edge clustering coefficient. A node’s essentiality is determined by the sum of the edge clustering coefficients of interactions connecting it and its neighbors. The new centrality measure NC takes into account the modular nature of protein essentiality. NC is applied to three different types of yeast protein-protein interaction networks, which are obtained from the DIP database, the MIPS database and the BioGRID database, respectively. The experimental results on the three different networks show that the number of essential proteins discovered by NC universally exceeds that discovered by the six other centrality measures: DC, BC, CC, SC, EC, and IC. Moreover, the essential proteins discovered by NC show significant cluster effect.
                Bookmark

                Author and article information

                Journal
                Complexity
                Complexity
                Hindawi Limited
                1076-2787
                1099-0526
                2017
                2017
                : 2017
                :
                : 1-16
                Article
                10.1155/2017/4783159
                © 2017

                Comments

                Comment on this article