12
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Ultrafast water sensing and thermal imaging by a metal-organic framework with switchable luminescence

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          A convenient, fast and selective water analysis method is highly desirable in industrial and detection processes. Here a robust microporous Zn-MOF (metal–organic framework, Zn(hpi2cf)(DMF)(H 2O)) is assembled from a dual-emissive H 2hpi2cf (5-(2-(5-fluoro-2-hydroxyphenyl)-4,5-bis(4-fluorophenyl)-1 H-imidazol-1-yl)isophthalic acid) ligand that exhibits characteristic excited state intramolecular proton transfer (ESIPT). This Zn-MOF contains amphipathic micropores (<3 Å) and undergoes extremely facile single-crystal-to-single-crystal transformation driven by reversible removal/uptake of coordinating water molecules simply stimulated by dry gas blowing or gentle heating at 70 °C, manifesting an excellent example of dynamic reversible coordination behaviour. The interconversion between the hydrated and dehydrated phases can turn the ligand ESIPT process on or off, resulting in sensitive two-colour photoluminescence switching over cycles. Therefore, this Zn-MOF represents an excellent PL water-sensing material, showing a fast (on the order of seconds) and highly selective response to water on a molecular level. Furthermore, paper or in situ grown ZnO-based sensing films have been fabricated and applied in humidity sensing (RH<1%), detection of traces of water (<0.05% v/v) in various organic solvents, thermal imaging and as a thermometer.

          Abstract

          Fast and sensitive detection of water molecules in organic solvents and gases remains an important challenge. Here, Pan and co-workers design a metal-organic framework capable of ultrafast and reversible water sensing by photoluminescence switching via an excited state intramolecular proton transfer mechanism.

          Related collections

          Most cited references55

          • Record: found
          • Abstract: found
          • Article: not found

          Luminescent metal-organic frameworks for chemical sensing and explosive detection.

          Metal-organic frameworks (MOFs) are a unique class of crystalline solids comprised of metal cations (or metal clusters) and organic ligands that have shown promise for a wide variety of applications. Over the past 15 years, research and development of these materials have become one of the most intensely and extensively pursued areas. A very interesting and well-investigated topic is their optical emission properties and related applications. Several reviews have provided a comprehensive overview covering many aspects of the subject up to 2011. This review intends to provide an update of work published since then and focuses on the photoluminescence (PL) properties of MOFs and their possible utility in chemical and biological sensing and detection. The spectrum of this review includes the origin of luminescence in MOFs, the advantages of luminescent MOF (LMOF) based sensors, general strategies in designing sensory materials, and examples of various applications in sensing and detection.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Luminescent metal-organic frameworks.

            Metal-organic frameworks (MOFs) display a wide range of luminescent behaviors resulting from the multifaceted nature of their structure. In this critical review we discuss the origins of MOF luminosity, which include the linker, the coordinated metal ions, antenna effects, excimer and exciplex formation, and guest molecules. The literature describing these effects is comprehensively surveyed, including a categorization of each report according to the type of luminescence observed. Finally, we discuss potential applications of luminescent MOFs. This review will be of interest to researchers and synthetic chemists attempting to design luminescent MOFs, and those engaged in the extension of MOFs to applications such as chemical, biological, and radiation detection, medical imaging, and electro-optical devices (141 references).
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Flexible metal-organic frameworks.

              Advances in flexible and functional metal-organic frameworks (MOFs), also called soft porous crystals, are reviewed by covering the literature of the five years period 2009-2013 with reference to the early pertinent work since the late 1990s. Flexible MOFs combine the crystalline order of the underlying coordination network with cooperative structural transformability. These materials can respond to physical and chemical stimuli of various kinds in a tunable fashion by molecular design, which does not exist for other known solid-state materials. Among the fascinating properties are so-called breathing and swelling phenomena as a function of host-guest interactions. Phase transitions are triggered by guest adsorption/desorption, photochemical, thermal, and mechanical stimuli. Other important flexible properties of MOFs, such as linker rotation and sub-net sliding, which are not necessarily accompanied by crystallographic phase transitions, are briefly mentioned as well. Emphasis is given on reviewing the recent progress in application of in situ characterization techniques and the results of theoretical approaches to characterize and understand the breathing mechanisms and phase transitions. The flexible MOF systems, which are discussed, are categorized by the type of metal-nodes involved and how their coordination chemistry with the linker molecules controls the framework dynamics. Aspects of tailoring the flexible and responsive properties by the mixed component solid-solution concept are included, and as well examples of possible applications of flexible metal-organic frameworks for separation, catalysis, sensing, and biomedicine.
                Bookmark

                Author and article information

                Journal
                Nat Commun
                Nat Commun
                Nature Communications
                Nature Publishing Group
                2041-1723
                30 June 2017
                2017
                : 8
                : 15985
                Affiliations
                [1 ]MOE Laboratory of Bioinorganic and Synthetic Chemistry, State Key Laboratory of Optoelectronic Materials and Technologies, Lehn Institute of Functional Materials, School of Chemistry, Sun Yat-Sen University , Guangzhou 510275, China
                [2 ]State Key Laboratory of Applied Organic Chemistry, Lanzhou University , Lanzhou 730000, China
                Author notes
                Article
                ncomms15985
                10.1038/ncomms15985
                5497063
                28665406
                c801b478-ea22-4a5a-8fcd-b90f46321a08
                Copyright © 2017, The Author(s)

                Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

                History
                : 27 January 2017
                : 18 May 2017
                Categories
                Article

                Uncategorized
                Uncategorized

                Comments

                Comment on this article