3
views
0
recommends
+1 Recommend
1 collections
    0
    shares

          The flagship journal of the Society for Endocrinology. Learn more

      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Iodine avidity in papillary and poorly differentiated thyroid cancer is predicted by immunohistochemical and molecular work-up

      research-article

      Read this article at

      ScienceOpenPublisherPMC
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Successful radioiodine treatment of differentiated thyroid cancer requires iodine avidity: that is, the concentration and retention of iodine in cancer tissue. Several parameters have previously been linked with lower iodine avidity. However, a comprehensive analysis of which factors best predict iodine avidity status, and the magnitude of their impact, is lacking.

          Methods

          Quantitative measurements of iodine avidity in surgical specimens (primary tumour and lymph node metastases) of 28 patients were compared to immunohistochemical expression of the thyroid-stimulating hormone receptor, thyroid peroxidase (TPO), pendrin, sodium–iodide symporter (NIS) and mutational status of BRAF and the TERT promoter. Regression analysis was used to identify independent predictors of poor iodine avidity.

          Results

          Mutations in BRAF and the TERT promoter were significantly associated with lower iodine avidity for lymph node metastases (18-fold and 10-fold, respectively). Membranous NIS localisation was found only in two cases but was significantly associated with high iodine avidity. TPO expression was significantly correlated with iodine avidity ( r = 0.44). The multivariable modelling showed that tumour tissue localisation (primary tumour or lymph node metastasis), histological subtype, TPO and NIS expression and TERT promoter mutation were each independent predictors of iodine avidity that could explain 68% of the observed variation of iodine avidity.

          Conclusions

          A model based on histological subtype, TPO and NIS expression and TERT promoter mutation, all evaluated on initial surgical material, can predict iodine avidity in thyroid cancer tissue ahead of treatment. This could inform early adaptation with respect to expected treatment effect.

          Related collections

          Most cited references39

          • Record: found
          • Abstract: found
          • Article: not found

          2015 American Thyroid Association Management Guidelines for Adult Patients with Thyroid Nodules and Differentiated Thyroid Cancer: The American Thyroid Association Guidelines Task Force on Thyroid Nodules and Differentiated Thyroid Cancer.

          Thyroid nodules are a common clinical problem, and differentiated thyroid cancer is becoming increasingly prevalent. Since the American Thyroid Association's (ATA's) guidelines for the management of these disorders were revised in 2009, significant scientific advances have occurred in the field. The aim of these guidelines is to inform clinicians, patients, researchers, and health policy makers on published evidence relating to the diagnosis and management of thyroid nodules and differentiated thyroid cancer.
            • Record: found
            • Abstract: found
            • Article: not found
            Is Open Access

            Integrated genomic characterization of papillary thyroid carcinoma.

            (2014)
            Papillary thyroid carcinoma (PTC) is the most common type of thyroid cancer. Here, we describe the genomic landscape of 496 PTCs. We observed a low frequency of somatic alterations (relative to other carcinomas) and extended the set of known PTC driver alterations to include EIF1AX, PPM1D, and CHEK2 and diverse gene fusions. These discoveries reduced the fraction of PTC cases with unknown oncogenic driver from 25% to 3.5%. Combined analyses of genomic variants, gene expression, and methylation demonstrated that different driver groups lead to different pathologies with distinct signaling and differentiation characteristics. Similarly, we identified distinct molecular subgroups of BRAF-mutant tumors, and multidimensional analyses highlighted a potential involvement of oncomiRs in less-differentiated subgroups. Our results propose a reclassification of thyroid cancers into molecular subtypes that better reflect their underlying signaling and differentiation properties, which has the potential to improve their pathological classification and better inform the management of the disease.
              • Record: found
              • Abstract: found
              • Article: not found

              Overview of the 2022 WHO Classification of Thyroid Neoplasms

              This review summarizes the changes in the 5th edition of the WHO Classification of Endocrine and Neuroendocrine Tumors that relate to the thyroid gland. The new classification has divided thyroid tumors into several new categories that allow for a clearer understanding of the cell of origin, pathologic features (cytopathology and histopathology), molecular classification, and biological behavior. Follicular cell-derived tumors constitute the majority of thyroid neoplasms. In this new classification, they are divided into benign, low-risk, and malignant neoplasms. Benign tumors include not only follicular adenoma but also variants of adenoma that are of diagnostic and clinical significance, including the ones with papillary architecture, which are often hyperfunctional and oncocytic adenomas. For the first time, there is a detailed account of the multifocal hyperplastic/neoplastic lesions that commonly occur in the clinical setting of multinodular goiter; the term thyroid follicular nodular disease (FND) achieved consensus as the best to describe this enigmatic entity. Low-risk follicular cell-derived neoplasms include non-invasive follicular thyroid neoplasm with papillary-like nuclear features (NIFTP), thyroid tumors of uncertain malignant potential, and hyalinizing trabecular tumor. Malignant follicular cell-derived neoplasms are stratified based on molecular profiles and aggressiveness. Papillary thyroid carcinomas (PTCs), with many morphological subtypes, represent the BRAF-like malignancies, whereas invasive encapsulated follicular variant PTC and follicular thyroid carcinoma represent the RAS-like malignancies. This new classification requires detailed subtyping of papillary microcarcinomas similar to their counterparts that exceed 1.0 cm and recommends not designating them as a subtype of PTC. The criteria of the tall cell subtype of PTC have been revisited. Cribriform-morular thyroid carcinoma is no longer classified as a subtype of PTC. The term "Hürthle cell" is discouraged, since it is a misnomer. Oncocytic carcinoma is discussed as a distinct entity with the clear recognition that it refers to oncocytic follicular cell-derived neoplasms (composed of > 75% oncocytic cells) that lack characteristic nuclear features of PTC (those would be oncocytic PTCs) and high-grade features (necrosis and ≥ 5 mitoses per 2 mm2). High-grade follicular cell-derived malignancies now include both the traditional poorly differentiated carcinoma as well as high-grade differentiated thyroid carcinomas, since both are characterized by increased mitotic activity and tumor necrosis without anaplastic histology and clinically behave in a similar manner. Anaplastic thyroid carcinoma remains the most undifferentiated form; squamous cell carcinoma of the thyroid is now considered as a subtype of anaplastic carcinoma. Medullary thyroid carcinomas derived from thyroid C cells retain their distinct section, and there is a separate section for mixed tumors composed of both C cells and any follicular cell-derived malignancy. A grading system for medullary thyroid carcinomas is also introduced based on mitotic count, tumor necrosis, and Ki67 labeling index. A number of unusual neoplasms that occur in the thyroid have been placed into new sections based on their cytogenesis. Mucoepidermoid carcinoma and secretory carcinoma of the salivary gland type are now included in one section classified as "salivary gland-type carcinomas of the thyroid." Thymomas, thymic carcinomas and spindle epithelial tumor with thymus-like elements are classified as "thymic tumors within the thyroid." There remain several tumors whose cell lineage is unclear, and they are listed as such; these include sclerosing mucoepidermoid carcinoma with eosinophilia and cribriform-morular thyroid carcinoma. Another important addition is thyroblastoma, an unusual embryonal tumor associated with DICER1 mutations. As in all the WHO books in the 5th edition, mesenchymal and stromal tumors, hematolymphoid neoplasms, germ cell tumors, and metastatic malignancies are discussed separately. The current classification also emphasizes the value of biomarkers that may aid diagnosis and provide prognostic information.

                Author and article information

                Journal
                Eur Thyroid J
                Eur Thyroid J
                ETJ
                European Thyroid Journal
                Bioscientifica Ltd (Bristol )
                2235-0640
                2235-0802
                23 June 2023
                23 June 2023
                01 August 2023
                : 12
                : 4
                : e230099
                Affiliations
                [1 ]Department of Molecular Medicine and Surgery , Karolinska Institutet, Stockholm, Sweden
                [2 ]Department of Medical Radiation Physics and Nuclear Medicine , Karolinska University Hospital, Stockholm, Sweden
                [3 ]Department of Oncology-Pathology , Karolinska Institutet, Stockholm, Sweden
                [4 ]Department of Pathology and Cancer Diagnostics , Karolinska University Hospital, Stockholm, Sweden
                [5 ]Stockholms Sjukhem Foundation's Research and Development Department , Stockholm, Sweden
                [6 ]Department of Clinical Sciences Lund , Lund University, Lund, Sweden
                [7 ]Department of Breast , Endocrine Tumours and Sarcoma, Karolinska University Hospital, Stockholm, Sweden
                Author notes
                Correspondence should be addressed to J N Nilsson: joachim.nilsson@ 123456ki.se
                Author information
                http://orcid.org/0000-0001-7496-9189
                http://orcid.org/0000-0001-7184-8373
                http://orcid.org/0000-0003-4569-5398
                http://orcid.org/0000-0002-4230-5940
                http://orcid.org/0000-0003-4183-7598
                http://orcid.org/0000-0003-2114-5949
                http://orcid.org/0000-0002-5945-9081
                Article
                ETJ-23-0099
                10.1530/ETJ-23-0099
                10388652
                37352166
                c8027af6-49e1-4f58-8e2b-5fe6494e9052
                © the author(s)

                This work is licensed under a Creative Commons Attribution 4.0 International License.

                History
                : 15 May 2023
                : 23 June 2023
                Categories
                Research

                thyroid cancer,iodine avidity,tert,nis,tpo
                thyroid cancer, iodine avidity, tert, nis, tpo

                Comments

                Comment on this article

                Related Documents Log