14
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Brain-derived neurotrophic factor induces proliferation of human airway smooth muscle cells

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Airway diseases such as asthma involve increased airway smooth muscle (ASM) contractility and remodelling via enhanced proliferation. Neurotrophins (NTs) such as brain-derived neurotrophic factor (BDNF), well-known in the nervous system, can regulate Ca 2+ signalling, and interact with cytokines in contributing to airway hyperreactivity. In this study, we determined whether and how BDNF regulates human ASM cell proliferation in the presence of inflammation, thus testing its potential role in airway remodelling. Cells were treated with 10 nM BDNF, 25 ng/ml tumour necrosis factor (TNF-α) or interleukin-13 (IL-13), or 10 ng/ml platelet-derived growth factor (PDGF). Proliferation was measured using CyQuant dye, with immunoblotting of cell cycle proteins predicted to change with proliferation. Forty-eight hours of BDNF enhanced ASM proliferation to ∼50% of that by PDGF or cytokines. Transfection with small interfering RNAs (siRNAs) targeting high-affinity tropomyosin-related kinase B receptor abolished BDNF effects on proliferation, whereas low-affinity 75 kD neurotrophin receptor (p75NTR) siRNA had no effect. Systematic pharmacologic inhibition of different components of ERK1/2 and PI3K/Akt1 pathways blunted BDNF or TNF-α–induced proliferation. BDNF also induced IκB phosphorylation and nuclear translocation of p50 and p65 NF-κB subunits, with electron mobility shift assay confirmation of NF-κB binding to consensus DNA sequence. These results demonstrate that NTs such as BDNF can enhance human ASM cell proliferation by activating proliferation-specific signalling pathways and a versatile transcription factor such as NF-κB, which are common to cytokines and growth factors involved in asthma.

          Related collections

          Most cited references55

          • Record: found
          • Abstract: found
          • Article: not found

          Pulmonary expression of interleukin-13 causes inflammation, mucus hypersecretion, subepithelial fibrosis, physiologic abnormalities, and eotaxin production.

          Interleukin (IL)-13 is a pleiotropic cytokine produced in large quantities by activated CD4(+) Th2 lymphocytes. To define further its potential in vivo effector functions, the Clara cell 10-kDa protein promoter was used to express IL-13 selectively in the lung, and the phenotype of the resulting transgenic mice was characterized. In contrast to transgene-negative littermates, the lungs of transgene-positive mice contained an inflammatory response around small and large airways and in the surrounding parenchyma. It was mononuclear in nature and contained significant numbers of eosinophils and enlarged and occasionally multinucleated macrophages. Airway epithelial cell hypertrophy, mucus cell metaplasia, the hyperproduction of neutral and acidic mucus, the deposition of Charcot-Leyden-like crystals, and subepithelial airway fibrosis were also prominently noted. Eotaxin protein and mRNA were also present in large quantities in the lungs of the transgene-positive, but not the transgene-negative, mice. IL-4, IL-5, granulocyte-macrophage colony-stimulating factor, and monocyte chemoattractant protein-5 were not similarly detected. Physiological evaluations revealed significant increases in baseline airways resistance and airways hyperresponsiveness (AHR) to methacholine in transgene-positive animals. Thus, the targeted pulmonary expression of IL-13 causes a mononuclear and eosinophilic inflammatory response, mucus cell metaplasia, the deposition of Charcot-Leyden-like crystals, airway fibrosis, eotaxin production, airways obstruction, and nonspecific AHR. IL-13 may play an important role in the pathogenesis of similar responses in asthma or other Th2-polarized tissue responses.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            MAP3K-related kinase involved in NF-kappaB induction by TNF, CD95 and IL-1.

            Several members of the tumour-necrosis/nerve-growth factor (TNF/NGF) receptor family activate the transcription factor NF-kappaB through a common adaptor protein, Traf2 (refs 1-5), whereas the interleukin 1 type-I receptor activates NF-kappaB independently of Traf2 (ref. 4). We have now cloned a new protein kinase, NIK, which binds to Traf2 and stimulates NF-kappaB activity. This kinase shares sequence similarity with several MAPKK kinases. Expression in cells of kinase-deficient NIK mutants fails to stimulate NF-kappaB and blocks its induction by TNF, by either of the two TNF receptors or by the receptor CD95 (Fas/Apo-1), and by TRADD, RIP and MORT1/FADD, which are adaptor proteins that bind to these receptors. It also blocked NF-kappaB induction by interleukin-1. Our findings indicate that NIK participates in an NF-kappaB-inducing signalling cascade common to receptors of the TNF/NGF family and to the interleukin-1 type-I receptor.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Bronchial smooth muscle remodeling involves calcium-dependent enhanced mitochondrial biogenesis in asthma

              Asthma and chronic obstructive pulmonary disease (COPD) are characterized by different patterns of airway remodeling, which all include an increased mass of bronchial smooth muscle (BSM). A remaining major question concerns the mechanisms underlying such a remodeling of BSM. Because mitochondria play a major role in both cell proliferation and apoptosis, we hypothesized that mitochondrial activation in BSM could play a role in this remodeling. We describe that both the mitochondrial mass and oxygen consumption were higher in the BSM from asthmatic subjects than in that from both COPD and controls. This feature, which is specific to asthma, was related to an enhanced mitochondrial biogenesis through up-regulation of peroxisome proliferator-activated receptor γ coactivator (PGC)–1α, nuclear respiratory factor-1, and mitochondrial transcription factor A. The priming event of such activation was an alteration in BSM calcium homeostasis. BSM cell apoptosis was not different in the three groups of subjects. Asthmatic BSM was, however, characterized by increased cell growth and proliferation. Both characteristics were completely abrogated in mitochondria-deficient asthmatic BSM cells. Conversely, in both COPD and control BSM cells, induction of mitochondrial biogenesis reproduced these characteristics. Thus, BSM in asthmatic patients is characterized by an altered calcium homeostasis that increases mitochondrial biogenesis, which, in turn, enhances cell proliferation, leading to airway remodeling.
                Bookmark

                Author and article information

                Journal
                J Cell Mol Med
                J. Cell. Mol. Med
                jcmm
                Journal of Cellular and Molecular Medicine
                Blackwell Publishing Ltd (Oxford, UK )
                1582-1838
                1582-4934
                April 2012
                16 April 2012
                : 16
                : 4
                : 812-823
                Affiliations
                [a ]Department of Anesthesiology, College of Medicine Mayo Clinic Rochester, MN, USA
                [b ]Department of Physiology and Biomedical Engineering, College of Medicine Mayo Clinic Rochester, MN, USA
                Author notes
                *Correspondence to: Y. S. PRAKASH, M.D., Ph.D., Department of Anesthesiology, 4-184 W Joseph SMH, Mayo Clinic, Rochester, MN 55905, USA. Tel.: +1-507-255-0165 Fax: +1-507-255-7300 E-mail: prakash.ys@ 123456mayo.edu
                Article
                10.1111/j.1582-4934.2011.01356.x
                3175295
                21651720
                c8087790-5156-4649-a3d4-3617381258da
                Copyright © 2012 Foundation for Cellular and Molecular Medicine/Blackwell Publishing Ltd.
                History
                : 19 January 2011
                : 05 June 2011
                Categories
                Original Articles

                Molecular medicine
                brain-derived neurotrophic factor,tropomyosin related kinase,lung,cytokine,asthma,growth factor

                Comments

                Comment on this article