4
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Global warming “heating up” the ICU through Candida auris infections: the climate changes theory

      letter
      , ,  
      Critical Care
      BioMed Central

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The simultaneous and independent worldwide outbreaks of Candida auris invasive infections seem to be a puzzling paradox [1, 2]. Since its first isolation, C. auris has risen several questions on how it could have appeared, survived, and thrived [1]. Several speculative hypotheses have been proposed. Although misuse of antimicrobials and over-abuse of azoles have been considered the main contributors to C. auris emergence [2, 3], these do not completely justify its spreading. One of the most recent theories considers changes in climate conditions as a causative factor altering infectious disease ecology [4, 5] (Fig. 1). Humans and microbes had been influencing each other for decades. Global warming is one of the major components of climate change connected to human activities, having considerable impact on health and indirectly boosting infectious diseases. Only few fungal species can be considered as pathogenetic for humans, as the majority of mammals are remarkably resistant to invasive fungal diseases. Besides immunological responses, humans are characterized by a “thermal restriction zone” that protects against infections. Human-induced climate changes may be responsible for the progressive narrowing of this thermal restriction zone, defined as the difference between human basal temperature and environmental temperature. As C. auris is more thermotolerant if compared to other yeasts, global warming might have played an important role in its emergence [4]. Although the specific ecological niche has not been identified yet, the climatic oscillations effect on wetlands might have contributed to enrich this potential habitat, conferring thermal and salinity tolerance to C. auris non-pathogenetic naïve strains. Acquisition of virulence factors might be explained considering the potential transfer of virulence genes from other pathogenetic Candida spp. to C. auris naïve strains, or by the combination of global warming and UV radiations that might have induced genetic mutations. The upgrade of C. auris strains, from saprophyte to pathogenetic yeasts, has witnessed an intermediate avian host, thus permitting its transmission to humans. Overtime, genetic and epigenetic changes have led to an extreme adaptability of C. auris to different ecological niches, leading to the development of persistent outbreaks in healthcare settings [4, 5]. Fig. 1 Global warming and the climate changes theory for C. auris emergence and spread. Rising ambient temperatures (caused by human activities) might have selected thermotolerant yeasts in wetlands; subsequently, acquiring opportunistic traits, C. auris might have spread through different ecosystems (wetlands, rural, and urban areas) thanks to intermediate avian hosts; following development of resistance and resilience through interspecies transmission, C. auris invades healthcare settings, leading to persistent outbreaks and causing infections in susceptible critically ill patients Although global warming seems to be an appealing theory, it is not possible to ignore other factors which might explain C. auris rise. High population densities, poor hygiene, migrations, international travels, and pollution might indeed have contributed to the persistence of C. auris and acquisition of antifungal resistance [4]. Future studies are needed to identify its evolutionary reservoirs and validate the climate changes theory.

          Related collections

          Most cited references4

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Epidemiology, clinical characteristics, resistance, and treatment of infections by Candida auris

          Candida spp. infections are a major cause of morbidity and mortality in critically ill patients. Candida auris is an emerging multi-drug-resistant fungus that is rapidly spreading worldwide. Since the first reports in 2009, many isolates across five continents have been identified as agents of hospital-associated infections. Independent and simultaneous outbreaks of C. auris are becoming a major concern for healthcare and scientific community. Moreover, laboratory misidentification and multi-drug-resistant profiles, rarely observed for other non-albicans Candida species, result in difficult eradication and frequent therapeutic failures of C. auris infections. The aim of this review was to provide an updated and comprehensive report of the global spread of C. auris, focusing on clinical and microbiological characteristics, mechanisms of virulence and antifungal resistance, and efficacy of available control, preventive, and therapeutic strategies. Electronic supplementary material The online version of this article (10.1186/s40560-018-0342-4) contains supplementary material, which is available to authorized users.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            On the Origins of a Species: What Might Explain the Rise of Candida auris ?

            Candida auris is an emerging multidrug-resistant yeast first described in 2009 that has since caused healthcare-associated outbreaks of severe human infections around the world. In some hospitals, it has become a leading cause of invasive candidiasis. C. auris is markedly different from most other pathogenic Candida species in its genetics, antifungal resistance, and ability to spread between patients. The reasons why this fungus began spreading widely in the last decade remain a mystery. We examine available data on C. auris and related species, including genomic epidemiology, phenotypic characteristics, and sites of detection, to put forth hypotheses on its possible origins. C. auris has not been detected in the natural environment; related species have been detected in in plants, insects, and aquatic environments, as well as from human body sites. It can tolerate hypersaline environments and higher temperatures than most Candida species. We explore hypotheses about the pre-emergence niche of C. auris, whether in the environmental or human microbiome, and speculate on factors that might have led to its spread, including the possible roles of healthcare, antifungal use, and environmental changes, including human activities that might have expanded its presence in the environment or caused increased human contact.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              What’s new on emerging resistant Candida species

                Bookmark

                Author and article information

                Contributors
                giovannimisseri1987@gmail.com
                ippolito.mariachiara@gmail.com
                andrea.cortegiani@unipa.it
                Journal
                Crit Care
                Critical Care
                BioMed Central (London )
                1364-8535
                1466-609X
                19 December 2019
                19 December 2019
                2019
                : 23
                : 416
                Affiliations
                ISNI 0000 0004 1762 5517, GRID grid.10776.37, Department of Surgical, Oncological and Oral Science (Di.Chir.On.S.). Section of Anesthesia, Analgesia, Intensive Care and Emergency. Policlinico Paolo Giaccone, , University of Palermo, ; Via del vespro 129, 90127 Palermo, Italy
                Author information
                http://orcid.org/0000-0003-1416-9993
                Article
                2702
                10.1186/s13054-019-2702-4
                6923979
                31856873
                c80b98d8-8a5c-42e7-8fed-3e4c018f9540
                © The Author(s). 2019

                Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License ( http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver ( http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

                History
                : 19 November 2019
                : 12 December 2019
                Categories
                Letter
                Custom metadata
                © The Author(s) 2019

                Emergency medicine & Trauma
                Emergency medicine & Trauma

                Comments

                Comment on this article