+1 Recommend
1 collections
      • Record: found
      • Abstract: found
      • Article: found

      Genetic, Molecular and Clinical Determinants for the Involvement of Aldosterone and Its Receptors in Major Depression

      Read this article at

          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.


          Major depression (MDE) has metabolic and neuroendocrine correlates, which point to a biological overlap between MDE and cardiovascular diseases. Whereas the hypothalamic-pituitary-adrenocortical axis has long been recognized for its involvement in depression, the focus was mostly on cortisol/corticosterone, whereas aldosterone appears to be the ‘forgotten' stress hormone. Part of the reason for this is that the receptors for aldosterone, the mineralocorticoid receptors (MR), were thought to be occupied by glucocorticoids in most parts of the brain. However, recently it turned out that aldosterone acts selectively in relevant mood-regulating brain areas, without competing with cortisol/corticosterone. These areas include the nucleus of the solitary tract (NTS), the amygdala and the paraventricular nucleus of the hypothalamus. These regions are intimately involved in the close relationship between emotional and vegetative symptoms. Genetic analysis supports the role of aldosterone and of MR-related pathways in the pathophysiology of depression. Functional markers for these pathways in animal models as well as in humans are available and allow an indirect assessment of NTS function. They include heart rate variability, baroreceptor reflex sensitivity, blood pressure, salt taste sensitivity and slow-wave sleep. MR activation in the periphery is related to electrolyte regulation. MR overactivity is a risk factor for diabetes mellitus and a trigger of inflammatory processes. These markers can be used not only to assist the development of new treatment compounds, but also for a personalized approach to treat patients with depression and related disorders by individual dose titration with an active medication, which targets this system.

          Related collections

          Most cited references 81

          • Record: found
          • Abstract: found
          • Article: not found

          The nature of feelings: evolutionary and neurobiological origins.

          Feelings are mental experiences of body states. They signify physiological need (for example, hunger), tissue injury (for example, pain), optimal function (for example, well-being), threats to the organism (for example, fear or anger) or specific social interactions (for example, compassion, gratitude or love). Feelings constitute a crucial component of the mechanisms of life regulation, from simple to complex. Their neural substrates can be found at all levels of the nervous system, from individual neurons to subcortical nuclei and cortical regions.
            • Record: found
            • Abstract: found
            • Article: not found

            Polymorphisms in FKBP5 are associated with increased recurrence of depressive episodes and rapid response to antidepressant treatment.

            The stress hormone-regulating hypothalamic-pituitary-adrenal (HPA) axis has been implicated in the causality as well as the treatment of depression. To investigate a possible association between genes regulating the HPA axis and response to antidepressants and susceptibility for depression, we genotyped single-nucleotide polymorphisms in eight of these genes in depressed individuals and matched controls. We found significant associations of response to antidepressants and the recurrence of depressive episodes with single-nucleotide polymorphisms in FKBP5, a glucocorticoid receptor-regulating cochaperone of hsp-90, in two independent samples. These single-nucleotide polymorphisms were also associated with increased intracellular FKBP5 protein expression, which triggers adaptive changes in glucocorticoid receptor and, thereby, HPA-axis regulation. Individuals carrying the associated genotypes had less HPA-axis hyperactivity during the depressive episode. We propose that the FKBP5 variant-dependent alterations in HPA-axis regulation could be related to the faster response to antidepressant drug treatment and the increased recurrence of depressive episodes observed in this subgroup of depressed individuals. These findings support a central role of genes regulating the HPA axis in the causality of depression and the mechanism of action of antidepressant drugs.
              • Record: found
              • Abstract: found
              • Article: not found

              Brain corticosteroid receptor balance in health and disease.

               M Oitzl,  R Man,  M Joëls (1998)
              In this review, we have described the function of MR and GR in hippocampal neurons. The balance in actions mediated by the two corticosteroid receptor types in these neurons appears critical for neuronal excitability, stress responsiveness, and behavioral adaptation. Dysregulation of this MR/GR balance brings neurons in a vulnerable state with consequences for regulation of the stress response and enhanced vulnerability to disease in genetically predisposed individuals. The following specific inferences can be made on the basis of the currently available facts. 1. Corticosterone binds with high affinity to MRs predominantly localized in limbic brain (hippocampus) and with a 10-fold lower affinity to GRs that are widely distributed in brain. MRs are close to saturated with low basal concentrations of corticosterone, while high corticosterone concentrations during stress occupy both MRs and GRs. 2. The neuronal effects of corticosterone, mediated by MRs and GRs, are long-lasting, site-specific, and conditional. The action depends on cellular context, which is in part determined by other signals that can activate their own transcription factors interacting with MR and GR. These interactions provide an impressive diversity and complexity to corticosteroid modulation of gene expression. 3. Conditions of predominant MR activation, i.e., at the circadian trough at rest, are associated with the maintenance of excitability so that steady excitatory inputs to the hippocampal CA1 area result in considerable excitatory hippocampal output. By contrast, additional GR activation, e.g., after acute stress, generally depresses the CA1 hippocampal output. A similar effect is seen after adrenalectomy, indicating a U-shaped dose-response dependency of these cellular responses after the exposure to corticosterone. 4. Corticosterone through GR blocks the stress-induced HPA activation in hypothalamic CRH neurons and modulates the activity of the excitatory and inhibitory neural inputs to these neurons. Limbic (e.g., hippocampal) MRs mediate the effect of corticosterone on the maintenance of basal HPA activity and are of relevance for the sensitivity or threshold of the central stress response system. How this control occurs is not known, but it probably involves a steady excitatory hippocampal output, which regulates a GABA-ergic inhibitory tone on PVN neurons. Colocalized hippocampal GRs mediate a counteracting (i.e., disinhibitory) influence. Through GRs in ascending aminergic pathways, corticosterone potentiates the effect of stressors and arousal on HPA activation. The functional interaction between these corticosteroid-responsive inputs at the level of the PVN is probably the key to understanding HPA dysregulation associated with stress-related brain disorders. 5. Fine-tuning of HPA regulation occurs through MR- and GR-mediated effects on the processing of information in higher brain structures. Under healthy conditions, hippocampal MRs are involved in processes underlying integration of sensory information, interpretation of environmental information, and execution of appropriate behavioral reactions. Activation of hippocampal GRs facilitates storage of information and promotes elimination of inadequate behavioral responses. These behavioral effects mediated by MR and GR are linked, but how they influence endocrine regulation is not well understood. 6. Dexamethasone preferentially targets the pituitary in the blockade of stress-induced HPA activation. The brain penetration of this synthetic glucocorticoid is hampered by the mdr1a P-glycoprotein in the blood-brain barrier. Administration of moderate amounts of dexamethasone partially depletes the brain of corticosterone, and this has destabilizing consequences for excitability and information processing. 7. The set points of HPA regulation and MR/GR balance are genetically programmed, but can be reset by early life experiences involving mother-infant interaction. 8. (ABSTRACT TRUNCATED)

                Author and article information

                Nephron Physiol
                Nephron Physiology
                S. Karger AG
                December 2014
                06 November 2014
                : 128
                : 1-2
                : 17-25
                aCovance Inc., Princeton, N.J., USA; bClinic of Psychiatry and Psychotherapy, Philipps University of Marburg, Marburg, Germany
                Author notes
                *Dr. Harald Murck, Covance Inc., 206 Carnegie Center, Princeton, NJ 08540 (USA), E-Mail,
                368265 Nephron Physiol 2014;128:17-25
                © 2014 S. Karger AG, Basel

                Copyright: All rights reserved. No part of this publication may be translated into other languages, reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, microcopying, or by any information storage and retrieval system, without permission in writing from the publisher. Drug Dosage: The authors and the publisher have exerted every effort to ensure that drug selection and dosage set forth in this text are in accord with current recommendations and practice at the time of publication. However, in view of ongoing research, changes in government regulations, and the constant flow of information relating to drug therapy and drug reactions, the reader is urged to check the package insert for each drug for any changes in indications and dosage and for added warnings and precautions. This is particularly important when the recommended agent is a new and/or infrequently employed drug. Disclaimer: The statements, opinions and data contained in this publication are solely those of the individual authors and contributors and not of the publishers and the editor(s). The appearance of advertisements or/and product references in the publication is not a warranty, endorsement, or approval of the products or services advertised or of their effectiveness, quality or safety. The publisher and the editor(s) disclaim responsibility for any injury to persons or property resulting from any ideas, methods, instructions or products referred to in the content or advertisements.

                Page count
                Figures: 1, Pages: 9


                Comment on this article