51
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Multiple sclerosis: experimental models and reality

      review-article
      ,
      Acta Neuropathologica
      Springer Berlin Heidelberg

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          One of the most frequent statements, provided in different variations in the introduction of experimental studies on multiple sclerosis (MS), is that “Multiple sclerosis is a demyelinating autoimmune disease and experimental autoimmune encephalomyelitis (EAE) is a suitable model to study its pathogenesis”. However, so far, no single experimental model covers the entire spectrum of the clinical, pathological, or immunological features of the disease. Many different models are available, which proved to be highly useful for studying different aspects of inflammation, demyelination, remyelination, and neurodegeneration in the central nervous system. However, the relevance of results from such models for MS pathogenesis has to be critically validated. Current EAE models are mainly based on inflammation, induced by auto-reactive CD4 + T-cells, and these models reflect important aspects of MS. However, pathological data and results from clinical trials in MS indicate that CD8 + T-cells and B-lymphocytes may play an important role in propagating inflammation and tissue damage in established MS. Viral models may reflect key features of MS-like inflammatory demyelination, but are difficult to use due to their very complex pathogenesis, involving direct virus-induced and immune-mediated mechanisms. Furthermore, evidence for a role of viruses in MS pathogenesis is indirect and limited, and an MS-specific virus infection has not been identified so far. Toxic models are highly useful to unravel mechanisms of de- and remyelination, but do not reflect other important aspects of MS pathology and pathogenesis. For all these reasons, it is important to select the right experimental model to answer specific questions in MS research.

          Related collections

          Most cited references128

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          The relation between inflammation and neurodegeneration in multiple sclerosis brains

          Some recent studies suggest that in progressive multiple sclerosis, neurodegeneration may occur independently from inflammation. The aim of our study was to analyse the interdependence of inflammation, neurodegeneration and disease progression in various multiple sclerosis stages in relation to lesional activity and clinical course, with a particular focus on progressive multiple sclerosis. The study is based on detailed quantification of different inflammatory cells in relation to axonal injury in 67 multiple sclerosis autopsies from different disease stages and 28 controls without neurological disease or brain lesions. We found that pronounced inflammation in the brain is not only present in acute and relapsing multiple sclerosis but also in the secondary and primary progressive disease. T- and B-cell infiltrates correlated with the activity of demyelinating lesions, while plasma cell infiltrates were most pronounced in patients with secondary progressive multiple sclerosis (SPMS) and primary progressive multiple sclerosis (PPMS) and even persisted, when T- and B-cell infiltrates declined to levels seen in age matched controls. A highly significant association between inflammation and axonal injury was seen in the global multiple sclerosis population as well as in progressive multiple sclerosis alone. In older patients (median 76 years) with long-disease duration (median 372 months), inflammatory infiltrates declined to levels similar to those found in age-matched controls and the extent of axonal injury, too, was comparable with that in age-matched controls. Ongoing neurodegeneration in these patients, which exceeded the extent found in normal controls, could be attributed to confounding pathologies such as Alzheimer's or vascular disease. Our study suggests a close association between inflammation and neurodegeneration in all lesions and disease stages of multiple sclerosis. It further indicates that the disease processes of multiple sclerosis may die out in aged patients with long-standing disease.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Cortical demyelination and diffuse white matter injury in multiple sclerosis.

            Focal demyelinated plaques in white matter, which are the hallmark of multiple sclerosis pathology, only partially explain the patient's clinical deficits. We thus analysed global brain pathology in multiple sclerosis, focusing on the normal-appearing white matter (NAWM) and the cortex. Autopsy tissue from 52 multiple sclerosis patients (acute, relapsing-remitting, primary and secondary progressive multiple sclerosis) and from 30 controls was analysed using quantitative morphological techniques. New and active focal inflammatory demyelinating lesions in the white matter were mainly present in patients with acute and relapsing multiple sclerosis, while diffuse injury of the NAWM and cortical demyelination were characteristic hallmarks of primary and secondary progressive multiple sclerosis. Cortical demyelination and injury of the NAWM, reflected by diffuse axonal injury with profound microglia activation, occurred on the background of a global inflammatory response in the whole brain and meninges. There was only a marginal correlation between focal lesion load in the white matter and diffuse white matter injury, or cortical pathology, respectively. Our data suggest that multiple sclerosis starts as a focal inflammatory disease of the CNS, which gives rise to circumscribed demyelinated plaques in the white matter. With chronicity, diffuse inflammation accumulates throughout the whole brain, and is associated with slowly progressive axonal injury in the NAWM and cortical demyelination.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Clinical and pathological insights into the dynamic nature of the white matter multiple sclerosis plaque.

              An extensive analysis of white matter plaques in a large sample of multiple sclerosis (MS) autopsies provides insights into the dynamic nature of MS pathology.
                Bookmark

                Author and article information

                Contributors
                +431 40160 34200 , hans.lassmann@meduniwien.ac.at
                Journal
                Acta Neuropathol
                Acta Neuropathol
                Acta Neuropathologica
                Springer Berlin Heidelberg (Berlin/Heidelberg )
                0001-6322
                1432-0533
                20 October 2016
                20 October 2016
                2017
                : 133
                : 2
                : 223-244
                Affiliations
                ISNI 0000 0000 9259 8492, GRID grid.22937.3d, Center for Brain Research, , Medical University of Vienna, ; Spitalgasse 4, 1090 Vienna, Austria
                Article
                1631
                10.1007/s00401-016-1631-4
                5250666
                27766432
                c81dca8b-4952-4857-a99d-38a4abd12240
                © The Author(s) 2016

                Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License ( http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

                History
                : 9 September 2016
                : 5 October 2016
                : 6 October 2016
                Funding
                Funded by: FundRef http://dx.doi.org/10.13039/501100002428, Austrian Science Fund;
                Award ID: P25240-B24
                Award ID: P27744-B27
                Award Recipient :
                Categories
                Review
                Custom metadata
                © Springer-Verlag Berlin Heidelberg 2017

                Neurology
                Neurology

                Comments

                Comment on this article