12
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      The human gut resistome: Current concepts & future prospects

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The human gut is home to a myriad of organisms. While some are harmless commensals, others are transient, pathogenic flora. The gut microbiome is composed of diverse bacterial flora, and apart from playing a major role in protecting from various infectious and non-infectious diseases, it plays an important role in resistance to antimicrobials. The collection of genes or genetic material that confers antimicrobial resistance constitutes the gut resistome, and it may involve the pathogens or commensals of the intestinal tract. The diversity of this gut resistome is influenced by various environmental factors including the diet and antibiotic exposure. This review highlights the recent concepts pertaining to the human gut resistome, factors affecting it, how it impacts human health and diseases, methods to study the resistome and potential therapeutic approaches.

          Related collections

          Most cited references72

          • Record: found
          • Abstract: found
          • Article: not found

          The comprehensive antibiotic resistance database.

          The field of antibiotic drug discovery and the monitoring of new antibiotic resistance elements have yet to fully exploit the power of the genome revolution. Despite the fact that the first genomes sequenced of free living organisms were those of bacteria, there have been few specialized bioinformatic tools developed to mine the growing amount of genomic data associated with pathogens. In particular, there are few tools to study the genetics and genomics of antibiotic resistance and how it impacts bacterial populations, ecology, and the clinic. We have initiated development of such tools in the form of the Comprehensive Antibiotic Research Database (CARD; http://arpcard.mcmaster.ca). The CARD integrates disparate molecular and sequence data, provides a unique organizing principle in the form of the Antibiotic Resistance Ontology (ARO), and can quickly identify putative antibiotic resistance genes in new unannotated genome sequences. This unique platform provides an informatic tool that bridges antibiotic resistance concerns in health care, agriculture, and the environment.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Call of the wild: antibiotic resistance genes in natural environments.

            Antibiotic-resistant pathogens are profoundly important to human health, but the environmental reservoirs of resistance determinants are poorly understood. The origins of antibiotic resistance in the environment is relevant to human health because of the increasing importance of zoonotic diseases as well as the need for predicting emerging resistant pathogens. This Review explores the presence and spread of antibiotic resistance in non-agricultural, non-clinical environments and demonstrates the need for more intensive investigation on this subject.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              ARDB—Antibiotic Resistance Genes Database

              The treatment of infections is increasingly compromised by the ability of bacteria to develop resistance to antibiotics through mutations or through the acquisition of resistance genes. Antibiotic resistance genes also have the potential to be used for bio-terror purposes through genetically modified organisms. In order to facilitate the identification and characterization of these genes, we have created a manually curated database—the Antibiotic Resistance Genes Database (ARDB)—unifying most of the publicly available information on antibiotic resistance. Each gene and resistance type is annotated with rich information, including resistance profile, mechanism of action, ontology, COG and CDD annotations, as well as external links to sequence and protein databases. Our database also supports sequence similarity searches and implements an initial version of a tool for characterizing common mutations that confer antibiotic resistance. The information we provide can be used as compendium of antibiotic resistance factors as well as to identify the resistance genes of newly sequenced genes, genomes, or metagenomes. Currently, ARDB contains resistance information for 13 293 genes, 377 types, 257 antibiotics, 632 genomes, 933 species and 124 genera. ARDB is available at http://ardb.cbcb.umd.edu/.
                Bookmark

                Author and article information

                Journal
                Indian J Med Res
                Indian J. Med. Res
                IJMR
                The Indian Journal of Medical Research
                Wolters Kluwer - Medknow (India )
                0971-5916
                October 2019
                : 150
                : 4
                : 345-358
                Affiliations
                [1 ] Department of Medical Microbiology, Postgraduate Institute of Medical Education & Research, Chandigarh, India
                [2 ] Department of Hepatology, Postgraduate Institute of Medical Education & Research, Chandigarh, India
                Author notes
                For correspondence: Dr Neelam Taneja, Department of Medical Microbiology, 2 nd Floor, Research Block A, Postgraduate Institute of Medical Education & Research, Sector 12, Chandigarh 160 012, India e-mail: drneelampgi@ 123456yahoo.com
                Article
                IJMR-150-345
                10.4103/ijmr.IJMR_1979_17
                6902357
                31823916
                c8216d7f-69ab-4612-bb4e-51be3932935d
                Copyright: © 2019 Indian Journal of Medical Research

                This is an open access journal, and articles are distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 License, which allows others to remix, tweak, and build upon the work non-commercially, as long as appropriate credit is given and the new creations are licensed under the identical terms.

                History
                : 14 December 2017
                Categories
                Review Article

                Medicine
                amr genes,antimicrobials,bacterial flora,gut,human,enteric pathogens,microbiome,resistome
                Medicine
                amr genes, antimicrobials, bacterial flora, gut, human, enteric pathogens, microbiome, resistome

                Comments

                Comment on this article