10
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Atypical frontoamygdala functional connectivity in youth with autism

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Functional connectivity (FC) between the amygdala and the ventromedial prefrontal cortex underlies socio-emotional functioning, a core domain of impairment in autism spectrum disorder (ASD). Although frontoamygdala circuitry undergoes dynamic changes throughout development, little is known about age-related changes in frontoamygdala networks in ASD. Here we characterize frontoamygdala resting-state FC in a cross-sectional sample (ages 7–25) of 58 typically developing (TD) individuals and 53 individuals with ASD. Contrary to hypotheses, individuals with ASD did not show different age-related patterns of frontoamygdala FC compared with TD individuals. However, overall group differences in frontoamygdala FC were observed. Specifically, relative to TD individuals, individuals with ASD showed weaker frontoamygdala FC between the right basolateral (BL) amygdala and the rostral anterior cingulate cortex (rACC). These findings extend prior work to a broader developmental range in ASD, and indicate ASD-related differences in frontoamygdala FC that may underlie core socioemotional impairments in children and adolescents with ASD.

          Related collections

          Most cited references92

          • Record: found
          • Abstract: found
          • Article: not found

          Emotional processing in anterior cingulate and medial prefrontal cortex.

          Negative emotional stimuli activate a broad network of brain regions, including the medial prefrontal (mPFC) and anterior cingulate (ACC) cortices. An early influential view dichotomized these regions into dorsal-caudal cognitive and ventral-rostral affective subdivisions. In this review, we examine a wealth of recent research on negative emotions in animals and humans, using the example of fear or anxiety, and conclude that, contrary to the traditional dichotomy, both subdivisions make key contributions to emotional processing. Specifically, dorsal-caudal regions of the ACC and mPFC are involved in appraisal and expression of negative emotion, whereas ventral-rostral portions of the ACC and mPFC have a regulatory role with respect to limbic regions involved in generating emotional responses. Moreover, this new framework is broadly consistent with emerging data on other negative and positive emotions. Published by Elsevier Ltd.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            An improved framework for confound regression and filtering for control of motion artifact in the preprocessing of resting-state functional connectivity data.

            Several recent reports in large, independent samples have demonstrated the influence of motion artifact on resting-state functional connectivity MRI (rsfc-MRI). Standard rsfc-MRI preprocessing typically includes regression of confounding signals and band-pass filtering. However, substantial heterogeneity exists in how these techniques are implemented across studies, and no prior study has examined the effect of differing approaches for the control of motion-induced artifacts. To better understand how in-scanner head motion affects rsfc-MRI data, we describe the spatial, temporal, and spectral characteristics of motion artifacts in a sample of 348 adolescents. Analyses utilize a novel approach for describing head motion on a voxelwise basis. Next, we systematically evaluate the efficacy of a range of confound regression and filtering techniques for the control of motion-induced artifacts. Results reveal that the effectiveness of preprocessing procedures on the control of motion is heterogeneous, and that improved preprocessing provides a substantial benefit beyond typical procedures. These results demonstrate that the effect of motion on rsfc-MRI can be substantially attenuated through improved preprocessing procedures, but not completely removed. Copyright © 2012 Elsevier Inc. All rights reserved.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Neurobiology of emotion perception I: The neural basis of normal emotion perception.

              There is at present limited understanding of the neurobiological basis of the different processes underlying emotion perception. We have aimed to identify potential neural correlates of three processes suggested by appraisalist theories as important for emotion perception: 1) the identification of the emotional significance of a stimulus; 2) the production of an affective state in response to 1; and 3) the regulation of the affective state. In a critical review, we have examined findings from recent animal, human lesion, and functional neuroimaging studies. Findings from these studies indicate that these processes may be dependent upon the functioning of two neural systems: a ventral system, including the amygdala, insula, ventral striatum, and ventral regions of the anterior cingulate gyrus and prefrontal cortex, predominantly important for processes 1 and 2 and automatic regulation of emotional responses; and a dorsal system, including the hippocampus and dorsal regions of anterior cingulate gyrus and prefrontal cortex, predominantly important for process 3. We suggest that the extent to which a stimulus is identified as emotive and is associated with the production of an affective state may be dependent upon levels of activity within these two neural systems.
                Bookmark

                Author and article information

                Journal
                101541838
                38415
                Dev Cogn Neurosci
                Dev Cogn Neurosci
                Developmental cognitive neuroscience
                1878-9293
                1878-9307
                7 June 2019
                07 December 2018
                June 2019
                14 June 2019
                : 37
                : 100603
                Affiliations
                [a ]Department of Psychology, Yale University, New Haven, CT 06511, USA
                [b ]Department of Psychology, University of Miami, Coral Gables, FL 33124, USA
                [c ]Division of Developmental Medicine, Harvard University, Boston, MA 02115, USA
                [d ]Department of Psychology, Columbia University, New York, NY 10027, USA
                [e ]Neuroscience Program, University of Miami Miller School of Medicine, Miami FL, 33136, USA
                Author notes
                [* ]Corresponding author at: Yale University, 2 Hillhouse Ave, New Haven, CT 06511, USA. paola.odriozola@ 123456yale.edu (P. Odriozola).
                [1]

                These two authors contributed equally to this work.

                Article
                NIHMS1530851
                10.1016/j.dcn.2018.12.001
                6570504
                30581125
                c830e744-0964-4669-9cc4-16e4458fc490

                This is an open access article under the CC BY-NC-ND license ( http://creativecommons.org/licenses/BY-NC-ND/4.0/).

                History
                Categories
                Article

                Neurosciences
                autism spectrum disorder (asd),amygdala,development,resting-state functional connectivity,adolescence,prefrontal cortex

                Comments

                Comment on this article