Blog
About

1
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Left atrial appendage studied by computed tomography to help planning for appendage closure device placement.

      Journal of Cardiovascular Electrophysiology

      Tomography, X-Ray Computed, Adult, Reproducibility of Results, Radiographic Image Interpretation, Computer-Assisted, radiography, Pulmonary Veins, Predictive Value of Tests, Middle Aged, Male, Humans, Female, Equipment Design, instrumentation, Cardiac Surgical Procedures, surgery, Atrial Fibrillation, Atrial Appendage, Aged

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          To quantitatively study various morphologic parameters of the left atrial appendage (LAA) by computed tomography (CT) to aid the preoperative planning and implantation of left atrial appendage closure devices. In 612 cases of patients with or without atrial fibrillation (AF), a cardiac CT study was performed. The classification of general LAA morphology included ChickenWing type (18.3%), WindSock (46.7%), Cauliflower type (29.1%), and Cactus type (5.9%). Anatomical relationship of the LAA to the left superior pulmonary vein (LSPV) were classified as high type (superior to LSPV, 30.2%), mid type (parallel to LSPV, 58.1%), and low type (inferior to LSPV, 11.7%). LAA ostium could be classified into 5 types including oval (68.9%), foot-like (10%), triangular (7.7%), water drop-like (7.7%), and round (5.7%). Two-dimensional (2D) orthogonal method was obviously not accurate for determining the LAA orifice because the measurement was often unparallel to the LAA orifice. Two-dimensional oblique method was better than 3-dimensional method in reproducibility to determine the size of LAA ostium. The diameter calculated from the perimeter of the LAA ostium was superior to the diameter from direct measurement of the LAA ostium for selecting the occluder. The morphology of the LAA and the LA ostium are extremely complex and heterogeneous. Sixty-four-channel cardiac CT could assist preoperative planning of LAA closure device placement. The diameter of the LAA ostium calculated from the perimeter is the best parameter for sizing the LAA occluder. © 2010 Wiley Periodicals, Inc.

          Related collections

          Author and article information

          Journal
          10.1111/j.1540-8167.2010.01814.x
          20550614

          Comments

          Comment on this article